
ROSInfer: Statically Inferring Behavioral Component Models for
ROS-based Robotics Systems

Tobias Dürschmid, Christopher S. Timperley, David Garlan, and Claire Le Goues

School of Computer Science, Carnegie Mellon University

Pittsburgh, PA, USA

ABSTRACT
Robotics systems are complex, safety-critical systems that can con-

sist of hundreds of software components that interact with each

other dynamically during run time. Software components of robot-

ics systems often exhibit reactive, periodic, and state-dependent

behavior. Incorrect component composition can lead to unexpected

behavior, such as components passively waiting for initiation mes-

sages that never arrive. Model-based software analysis is a common

technique to identify incorrect behavioral composition by checking

desired properties of given behavioral models that are based on

component state machines. However, writing state machine models

for hundreds of software components manually is a labor-intensive

process. This motivates work on automated model inference. In

this paper, we present an approach to infer behavioral models for

systems based on the Robot Operating System (ROS) using static

analysis by exploiting assumptions about the usage of the ROS API

and ecosystem. Our approach is based on searching for common

behavioral patterns that ROS developers use for implementing reac-

tive, periodic, and state-dependent behavior using the ROS frame-

work API. We evaluate our approach and our tool ROSInfer on five

complex real-world ROS systems with a total of 534 components.

For this purpose we manually created 155 models of components

from the source code to be used as a ground truth and available data

set for other researchers. ROSInfer can infer causal triggers for

87 % of component architectural behaviors in the 534 components.

ACM Reference Format:
Tobias Dürschmid, Christopher S. Timperley, David Garlan, and Claire

Le Goues. 2024. ROSInfer: Statically Inferring Behavioral Component Mod-

els for ROS-based Robotics Systems. In 2024 IEEE/ACM 46th International
Conference on Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Por-
tugal. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3597503.

3639206

1 INTRODUCTION
Ensuring that robotics systems operate safely and correctly is an

important challenge in software engineering. As robots are becom-

ing increasingly integrated in work environments and the daily

lives of many people [30, 35, 52, 79] their faults can potentially

cause physical damage, injuries, and even fatalities [5, 49, 78]. How-

ever, ensuring that robotics software systems are safe and operate

correctly is hindered by their large size and complexity [42, 54].

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0217-4/24/04

https://doi.org/10.1145/3597503.3639206

Robotics systems, especially systems written for the Robot Op-

erating System (ROS) [66], the most popular robotics framework,

are often component-based, i.e., are implemented as independently

deployable run-time units that communicate with each other pri-

marily via messages, i.e., asynchronous data exchange [2, 13, 36, 66,
76]. Robotics systems can be comprised of hundreds of software

components, each of which can have complex behavior [10, 45, 76].

Many ROS systems are predominantly composed of reusable com-

ponents implemented by external developers [41]. In this context,

the main challenge is their correct composition [14, 76].

The composition and evolution of software components is error-

prone, since components regularly make undocumented assump-

tions about their environment, such as receiving a set of initializa-

tion messages before starting operation. When composed inconsis-

tently, the behavior of these systems can be unexpected, such as a

component indefinitely waiting, not changing to the desired state,

ignoring inputs, message loss, or publishing messages at an unex-

pectedly high frequency [14, 27, 75]. In this paper we call these bugs

“behavioral architectural composition bugs”, because they are caused
by inconsistent compositions andmanifest in inter-component com-

munication, i.e., on the architectural level. Finding and debugging

behavioral architectural composition bugs in robotics systems is

challenging, because components frequently fail silently, failures

can propagate through the system, and state-dependent behavior

is hard to reason about [1, 17, 31, 42].

Fortunately, a large amount of existing formal methods research

has been done on using formal model-based architecture analysis

to ensure the safety and correct composition of components [4, 12,

20, 32, 51, 59, 60, 80]. Based on structural and behavioral models,

such as state machines, of the current system, architects can find

inconsistencies or predict the impact of changes on the system’s

behavior using existing analyses [9, 11, 23, 26, 27, 40, 47, 83]. How-

ever, in practice, due to the complexity of robotics systems, creating

models manually and keeping them consistent with the code is

time-consuming and difficult [19, 20, 80].

To reduce the modeling effort and make formal analysis more

accessible in practice, this paper presents a static analysis technique

to infer architecturally-relevant behavior for ROS-based systems.

Architecturally-relevant component behavior is the set of all behav-
iors required to describe what causes inter-component communi-

cation, i.e., what causes a component to send messages.

Architectural recovery techniques, such as ROSDiscover [76],

HAROS [67, 69], and the tool by Witte et al. [82], can reconstruct

structural models, such as component-port-connector models that

describe the organization of components and the relationships

between them, including what types of inputs and outputs the

component handles. However, they do not reconstruct component
behavior, i.e., dynamic aspects that describe how the component

https://doi.org/10.1145/3597503.3639206
https://doi.org/10.1145/3597503.3639206
https://doi.org/10.1145/3597503.3639206

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Tobias Dürschmid, Christopher S. Timperley, David Garlan, and Claire Le Goues

reacts to inputs and how it produces outputs, such as whether

a component sends a message in response to receiving an input,

whether it sends messages periodically or sporadically, and what

state conditions or inputs determine whether it sends a message.

Existing approaches for inferring behavioral models, such as

Perfume [61], use dynamic analysis to infer state machines from

execution traces. However, these approaches cannot guarantee

that the relationships they find are causal, since they observe only

correlations within behavior. Furthermore, for complex systems

they come with the trade-off of long analysis times or low coverage.

To address the challenge of automatically inferring behavioral

component models for ROS-based systems we propose to use static

analysis of the system’s source code written in C++. Static inference

of behavioral models is challenging, because the analysis needs

to infer what subset of a component’s code communicates with

other components, i.e., is architecturally-relevant, and what causes

message sending behavior, i.e., in what situations is the code that

implements inter-component communication executed.

Fortunately, the following observations about the ROS ecosystem

make ROS components easier to analyze than general C++ code:

• Inter-component communication happens almost exclusively

via Application Programming Interface (API) calls that have

well-understood architectural semantics [68].

• The causes of message sending behavior (e.g., periodic loops,

reacting to receiving a message) are usually implemented

using features provided by the ROS framework and often

follow common behavioral patterns.

Based on these observations, we make the following contributions:

(1) An approach of API-call-guided static analysis to infer state

machine models that capture architecturally-relevant com-

ponent behavior for ROS systems (in Section 3).

(2) A prototypical implementation of the approach that is an

extension to ROSDiscover, an existing tool for structural

architecture recovery [76] (in replication package).

(3) An empirical evaluation of the presented approach’s recov-

ery rate, recall, and precision of five real-world open-source

systems with a total of 534 components (in Section 4).

(4) A data set of 155 handwritten behavioral component models

of components for the evaluation systems that can be used

by other researchers (in replication package).

While this work focuses on the ROS ecosystem, the approach of

API-call guided static recovery of component behavioral models

seems promising to generalize to other frameworks and ecosystems

that follow the observations above.

2 ARCHITECTURALLY-RELEVANT
COMPONENT BEHAVIOR IN ROS

Fortunately, only a small part of the overall behavior of a component

is relevant to describe to component’s behavior on an architectural

level. This makes it practically possible for static analysis to infer

behavioral component models for complex systems. This section de-

fines architecturally-relevant behavior and describes corresponding

architectural styles offered by ROS.

Architecturally-Relevant Component Behavior

Architecturally-relevant component behavior is the set of all be-
haviors required to describe what causes a component to send

messages (e.g., triggers, state variables, state transitions).

2.1 The Robot Operating System (ROS)
ROS is the most popular framework for robotics systems, and sup-

ports a large ecosystem of more than 7 500
1
software packages. In

practice, ROS is used by many companies, such as Amazon, BMW,

Boeing, Bosch, Boston Dynamics, NASA, PAL Robotis, and Siemens.

From a software engineering research perspective, ROS is a typ-

ical example of a framework for component-based architectures.

That means ROS systems are developed to consist of independently

deployable run-time units i.e., components, in ROS known as nodes,
that primarily communicate with each other via messages [2, 13, 36,

66, 76]. Each node is implemented as an independent process and is

typically responsible for providing a single function (e.g., transform-

ing depth images into point clouds, planning the robot’s trajectory,

and translating movements into low-level motor commands). Nodes

communicate with each other over named channels (i.e., topics,

services, actions). In this paper, we focus on topic-based commu-

nications and service calls, which represent the vast majority of

communications in ROS systems [76].

Services represent a synchronous two-way call-return-style.

Topics use a publish-subscribe model to provide asynchronous

message-based, multi-endpoint communication between nodes.

Each topic can have multiple publishers and subscribers. Node-

topic connections are defined in the node’s source code and are

established at run time by providing the name of a topic in the form

of a string to the ROS API. Topics are typically used for both report-

ing periodic information (e.g., camera data, sensor data, position)

and sporadic requests (e.g., disabling a motor).

Figure 1 shows a typical example of how ROS developers use the

ROS API to implement architectural component behavior. To define

behavior that handles input messages, the ROS framework lets users

register callback methods that are called by the framework when

a component receives a message (see subscribe call in Figure 1).

To define periodic behavior, ROS offers the Timer API and the Rate

API (see periodic sleep in Figure 1).

2.2 Formalization of Architecturally-Relevant
Component Behavior

To define the semantics of the behavioral models that we infer, this

section introduces the formalism of architecturally-relevant compo-

nent behavior used throughout the paper. To tailor it to the domain

of component-based robotics systems, we model architecturally-

relevant behavior as a variant of input-output state machines that

contain explicit state variables and include periodic triggers and

component-start events with the following definitions:

1
https://index.ros.org/stats/ [Date Accessed: 27th July 2023]

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28c%2B%2B%29
http://wiki.ros.org/roscpp/Overview/Timers
http://docs.ros.org/en/diamondback/api/rostime/html/classros_1_1Rate.html
http://docs.ros.org/en/diamondback/api/rostime/html/classros_1_1Rate.html
https://index.ros.org/stats/

ROSInfer: Statically Inferring Behavioral Component Models for ROS-based Robotics Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

bool g_pose_set = false;

void OdometryPoseCallback(const OdometryConstPtr msg)

{

 g_pose_set = true;

}

static const int LOOP_RATE = 10; //Hz

int main(int argc, char** argv)

{

 ros::NodeHandle nh = getNodeHandle();

 ros::Subscriber odometry_subscriber = nh.subscribe(

 "odom_pose", OdometryPoseCallback);

 ros::Publisher vis_pub = nh.advertise("next_waypoint_mark");

 ros::Rate loop_rate(LOOP_RATE);

 while (ros::ok())

 {

 if (g_pose_set == false)

 {

 loop_rate.sleep();

 continue;

 }

 vis_pub.publish(marker);

 loop_rate.sleep();

 }

 return 0;

}

State Change

Reactive Behavior

Callback

Trigger

Initial State

Periodic Loop

Message Output

State Condition

Periodic Sleep

Figure 1: Simplified example of a ROS component (lat-
tice_trajectory_gen) that waits for an inputmessage and then
periodically publishes a message with a frequency of 10Hz.

Component State Machine 𝑪 := (𝑺, 𝒔0, 𝑰 , 𝑶, 𝜹)

A component state machine 𝐶 is a 5-tuple of states 𝑆 , an initial

state 𝑠0 ∈ 𝑆 , input triggers 𝐼 , outputs 𝑂 , and transitions 𝛿 .

Component States 𝑺 := [𝒗𝒂𝒓1 : 𝑩1, 𝒗𝒂𝒓2 : 𝑩2, ..., 𝒗𝒂𝒓𝒏 : 𝑩𝒏]

Component states 𝑆 are records of named state variables

𝑣𝑎𝑟1, 𝑣𝑎𝑟2, ..., 𝑣𝑎𝑟𝑛 ∈ 𝑆𝑡𝑟𝑖𝑛𝑔 with types 𝐵1, 𝐵2, ..., 𝐵𝑛 ∈ 𝑇𝑦𝑝𝑒𝑠 .

𝑇𝑦𝑝𝑒𝑠 := {𝐵𝑜𝑜𝑙, 𝐼𝑛𝑡, 𝐸𝑛𝑢𝑚, 𝐹𝑙𝑜𝑎𝑡, 𝑆𝑡𝑟𝑖𝑛𝑔}.

Input Triggers 𝑰 ⊆ 𝑴𝒊𝒏 ∪ 𝑷 ∪ 𝑬

An input trigger is a message handled by an input port 𝒎 ∈

𝑴𝒊𝒏 , a periodic trigger 𝒑𝒇 ∈ 𝑷 with frequency 𝑓 ∈ 𝐹𝑙𝑜𝑎𝑡 , or a

component event 𝒆 ∈ 𝑬 , such as “component started”. To keep

the model simple, we do not model the content of messages.

Outputs 𝑶 ⊆ 𝑴𝒐𝒖𝒕 ∪ {𝝐}

Outputs are either messages sent through output port𝑚 ∈ 𝑀𝑜𝑢𝑡

or the empty output 𝜖 for transitions that change only the state

but do not produce an output.

Transition Function 𝜹 := 𝑺 × 𝑰 ⇀ 𝑶 × 𝑺

The partial transition function 𝛿 := 𝑆 × 𝐼 ⇀ 𝑂 ×𝑆 is represented

in pre- and post-condition form with preconditions being pred-

icates on 𝑠 ∈ 𝑆 and 𝑖 ∈ 𝐼 that define for which inputs and

states the transition is triggered and post-conditions defining

an output 𝑜 ∈ 𝑂 and the next state 𝑠′ ∈ 𝑆 in terms of 𝑠 and 𝑖 .

𝑆 = [𝑔_𝑝𝑜𝑠𝑒_𝑠𝑒𝑡 : 𝐵𝑜𝑜𝑙]; 𝑠0 = [𝑔_𝑝𝑜𝑠𝑒_𝑠𝑒𝑡 = 𝑓 𝑎𝑙𝑠𝑒]
𝑀𝑖𝑛 = {𝑜𝑑𝑜𝑚_𝑝𝑜𝑠𝑒}; 𝑃 = {𝑝10}
𝑀𝑜𝑢𝑡 = {𝑛𝑒𝑥𝑡_𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡_𝑚𝑎𝑟𝑘};

𝐼 = {𝑝10, 𝑜𝑑𝑜𝑚_𝑝𝑜𝑠𝑒};𝑂 = {𝑛𝑒𝑥𝑡_𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡_𝑚𝑎𝑟𝑘, 𝜖}
Transitions:

OdometryPoseCallback(𝑠 ∈ 𝑆 , 𝑖 ∈ 𝐼):
pre: 𝑖 == 𝑜𝑑𝑜𝑚_𝑝𝑜𝑠𝑒

post: 𝑔_𝑝𝑜𝑠𝑒_𝑠𝑒𝑡 ′ = 𝑡𝑟𝑢𝑒 and 𝑜 = 𝜖

periodic(𝑠 ∈ 𝑆 , 𝑖 ∈ 𝐼):
pre: 𝑖 == 𝑝10 ∧ 𝑠 .𝑔_𝑝𝑜𝑠𝑒_𝑠𝑒𝑡 == 𝑡𝑟𝑢𝑒

post: 𝑠′ = 𝑠 and 𝑜 = 𝑛𝑒𝑥𝑡_𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡_𝑚𝑎𝑟𝑘

Figure 2: Examplemodel for code shown in Figure 1. The first
transition handles 𝒐𝒅𝒐𝒎_𝒑𝒐𝒔𝒆 inputs and changes the state
variable g_pose_set to true without an output. The second
transition triggers periodically with a frequency of 10Hz if
the state variable g_pose_set is true. Then it sends amessage.

Unknown Value ⊤

Finally, the formalism needs a special element ⊤ (pronounced

“top”) that is used to represent an unknown value for cases

in which the static analysis is unable to infer the value of an

expression (e.g., the frequency of periodic publishing, values of

initial states, or the right side of assignments of state variables).

It is included in all data types: ∀𝑇 ∈ 𝑇𝑦𝑝𝑒𝑠 : ⊤ ∈ 𝑇 .

Figure 2 shows the model for the example code shown in Figure 1.

2.3 Behavioral Architecture Composition Bugs
Behavioral component models can be used to find behavioral archi-
tecture composition bugs, i.e., bugs that result from incorrect compo-

nent composition and impact the software architecture’s behavior.

Figure 1 shows an example of a bug from the Autoware.AI [39]

system in which the lattice_trajectory_gen component requires an

input to perform its main functionality although no other compo-

nent sends this message. Hence, lattice_trajectory_gen waits indef-

initely. Approaches that recover only component-port-connector

(CPC) models, such as ROSDiscover [76], cannot find this bug,

because they cannot infer that the input is required, i.e., the com-

ponent’s main functionality depends on it. Our approach classifies

the input as required by inferring component state machines; iden-

tifying that the component’s expected behavior happens in the

state g_pose_set == true, which is triggered only by the message

input; and detecting that no other component sends this message.

Compared to ROSDiscover, ROSInfer adds models of internal

component behaviors in the format of component state machines

supporting the finding of behavioral architecture composition bugs.

In particular, it can find three real-world bugs from the original

ROSDiscover evaluation, that ROSDiscover was unable to find

(autoware-02, autoware-03, and autoware-10) [76].

Besides these Autoware bugs, our approach increases the practi-

cality and accessibility of a large amount of existing analyses on

component state machine models to find behavioral architecture

https://github.com/autowarefoundation/autoware/blob/17e61e22a02ddd35afd176c4045930b8041802b9/ros/src/computing/planning/motion/packages/driving_planner/nodes/lattice_trajectory_gen/lattice_trajectory_gen.cpp
https://github.com/autowarefoundation/autoware/blob/17e61e22a02ddd35afd176c4045930b8041802b9/ros/src/computing/planning/motion/packages/driving_planner/nodes/lattice_trajectory_gen/lattice_trajectory_gen.cpp
https://github.com/autowarefoundation/autoware/blob/17e61e22a02ddd35afd176c4045930b8041802b9/ros/src/computing/planning/motion/packages/driving_planner/nodes/lattice_trajectory_gen/lattice_trajectory_gen.cpp

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Tobias Dürschmid, Christopher S. Timperley, David Garlan, and Claire Le Goues

ROSInfer

Initial

 State

State

 Variables

1. API Call

Detection

3. State Variable

Detection

2. Behavioral

Pattern Detection

5. Initial State

Inference
𝑷 𝑴𝒐𝒖𝒕 𝑴𝒊𝒏 𝑬 𝑺 𝒔𝟎

Source

Code

4. Transition

Inference

Model

𝑪

Behavioral

Patterns
Transitions 𝜹

Figure 3: Overview of the ROSInfer static analysis. Boxes represent analysis steps (see Section 3), gray ovals represent elements
of the output model (see Section 2.2), white ovals represent intermediate results, and arrows indicate data flow.

composition bugs [6, 7, 9, 23, 26, 27, 43, 44, 47, 74, 83], since ro-

manticists do not need to create the required models manually.

Thereby, it becomes easier for them to ensure the safety and correct

composition of software components [2, 4, 12, 32, 51, 59, 60, 80].

To check whether the components of a system are composed

correctly, properties such as “An input at input port 𝐼1 of component

𝐶𝑎 can/must result in an output at output port 𝑂1 of 𝐶𝑏” can be

checked via discrete event simulation [11] or logical reasoning [40].

Furthermore, synchronizing the resulting component state ma-

chines on their input/output messages creates a system-wide state

machine model over which system-level Linear Temporal Logic

(LTL) properties can be checked via approaches such as the ROS

theorem prover by Kortik and Shastha [43] or PlusCal/TLA+ [48].

On these models, properties, such as a component changing to a

desired state, no messages getting lost or ignored, or a component

eventually publishing a certain message, can be checked [23, 26].

Additionally, knowing the frequencies at which periodic mes-

sages get published allows reasoning about the frequencies of tran-

sitive receivers of a message to check for unexpectedly high pub-

lishing frequencies (e.g., if behavior is not supposed to be periodic

but reacts to periodically sent input).

3 APPROACH
This section describes our approach of API-call-guided static in-

ference of architecturally-relevant component behavior for ROS

systems and the implementation of this approach in our tool called

ROSInfer. The analysis process is shown in Figure 3.

In general, even inferring only architecturally-relevant behavior

is challenging, because theoretically any piece of code could send

a message. Fortunately, the following observations about how the

ROS framework is used in practice allow us to narrow down the

analysis:

Component Framework API: Inter-component communica-

tion for sending and receiving messages is implemented al-

most exclusively via API calls that have well-understood

architectural semantics [68, 76]. This simplifies the static

inference of architecturally-relevant behavior by reducing

the problem of tracing message-sending behavior to code lo-

cations to finding the corresponding API calls and inferring

their arguments.

Behavioral Patterns Usage: The triggers of message sending

behavior are usually implemented using common behavioral
patterns (e.g., implementing periodic behavior by sending

messages in an unbounded loop that sleeps for the remainder

of a periodic interval as shown in Figure 1). This simplifies

the problem of identifying the triggers and effects of mes-

sage sending / receiving behavior by looking for common

patterns.

We consider behavior to be reactive if it is triggered by receiving

a message or a component-event (e.g., component started/stopped

or (un)subscribed from/to a topic). We consider behavior to be

periodic if it is triggered with a constant target frequency. Periodic

and reactive behavior can both be state-based, i.e., triggered only

under conditions depending on the state of the component.

The key idea of our approach is to find ROS API calls that imple-

ment the triggers or outputs of architecturally-relevant behavior,

infer the API call arguments, find control flow leading to message

sending behavior, and reconstruct state variables and state transi-

tions on which architecturally-relevant behavior depends. While

our approach focuses on the ROS ecosystem, it can generalize to

every framework or ecosystem for which the observations listed

above hold true as well.

The remainder of the section describes each analysis step.

3.1 API Call Detection
The first step in API-call-guided inference of component behav-

ioral models is to detect API calls that implement elements of

architecturally-relevant behavior. ROSInfer accomplishes this by

traversing the Abstract Syntax Tree (AST) and detecting syntactic

patterns that identify architecturally-relevant API calls (see below).

ROSInfer detects API calls via AST matchers that look for method

calls based on the fully qualified method name and argument list.

For most kinds of API calls, ROSInfer then attempts to recover the

values of arguments and the object on which the function is called

to infer additional details, such as what port owns this behavior, or

the frequency / duration of sleep calls.

ROSInfer detects the following API calls and behaviors:

Inferring Message Outputs 𝑴𝒐𝒖𝒕 : To infer message outputs

𝑀𝑜𝑢𝑡 behavioral inference approaches need to identity points in the

component’s source code that send messages to other components.

For publish-subscribe styles, this consists of API calls to publish

a message and corresponding API wrappers (e.g., sendTransform,
diagnostic_updater, and CameraPublisher).

To identify the corresponding output port, ROSInfer infers the

publisher object on which each publish call is made and traces the

object to its creation via the NodeHandle::advertise API call.
Inferring Reactive Triggers 𝑴𝒊𝒏: To infer reactive triggers,

behavioral inference needs to looks for the control flow entry points

http://docs.ros.org/en/indigo/api/tf/html/c++/classtf_1_1TransformBroadcaster.html
http://wiki.ros.org/diagnostic_updater
http://docs.ros.org/en/jade/api/image_transport/html/classimage__transport_1_1CameraPublisher.html
https://docs.ros.org/en/api/roscpp/html/classros_1_1NodeHandle.html#ae4711ef282892176ba145d02f8f45f8d

ROSInfer: Statically Inferring Behavioral Component Models for ROS-based Robotics Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

(i.e., callbacks that handle a received message or a requested ser-

vice or the component being started). In publish-subscribe styles,

subscriber callbacks define the component’s behavior in response

to receiving a certain message. Analogously, in call-return styles

service call callbacks need to be identified.

To identify control flow entry points of detected input ports

ROSInfer looks for callbacks that are parameters to the ROS API

calls subscribe, registerCallback,2 and advertiseService.
Inferring Periodic Triggers 𝑷 : To infer periodic triggers, be-

havioral inference needs to identity sleep calls. There are two kinds

of sleep calls: (1) constant-time sleep calls that sleep for the same

amount of time every time they are called, (2) filling-time sleep calls
that sleep for the remainder of a periodic interval every time they

are called. Filling-time sleep calls allow the accurate static inference

of the target frequency (unless the execution of each cycle takes

longer than the cycle time, resulting in a lower actual frequency)

while constant-time sleep calls can provide only an upper bound

on the frequency, since execution times of other statements are not

captured.

C++ offers three common constant-time sleep calls: usleep,
sleep, and std::this_thread::sleep_for. The ROS framework

offers Duration::sleep. ROSInfer detects these calls and infers

the duration and their units from arguments using constant-folding.

ROS offers two filling-time API calls: Rate::sleep, which is

called on a rate object (see periodic sleep in Figure 1), and NodeHandle
::createTimer, which has a rate object and callback as argument.

Since the frequency is specified in the constructor of the Rate ob-
ject ROSInfer uses constant-folding to infer the frequency’s value

and denotes it with ⊤ if it cannot constant-fold it.

3.2 Behavioral Pattern Detection
After API call detection, ROSInfer runs a control-flow analysis on

the program to construct an abstract representation of the program

that contains APIs calls, control flow statements, function calls,

and assignments. On this abstract representation, ROSInfer de-

tects behavioral patterns that describe the architecturally-relevant

behavior.

Detecting Reactive Behavior: Reactive publishing behavior

is message sending that is caused by receiving a message or a

component event. To detect message outputs 𝑜𝑢𝑡 ∈ 𝑀𝑜𝑢𝑡 reacting

to message inputs 𝑖𝑛 ∈ 𝑀𝑖𝑛 ROSInfer looks for the behavioral

pattern of publish calls happening (transitively) within a subscriber

callback method by checking for a path in the call graph from

the callback method for 𝑖𝑛 to any publish calls of 𝑜𝑢𝑡 . Since some

systems pass publish objects as arguments to functions that then

call publish on their arguments, ROSInfer tracks the object identity
of arguments when traversing the call graph. This pattern is shown

in Figure 4.

The other pattern for reactive behavior that ROSInfer identifies

is if a publish call happens (transitively) within the main method

and its control dependencies are satisfied in the initial state, then it

responds to the component event “component-started” ∈ 𝐸.

2
To filter messages or to define a single callback method for multiple subscribers, ROS

offers the message filters API.

CallExpr(callee, caller):

isPublishCall(callee)

Publisher pub(𝑜𝑢𝑡 = topic)

callbackName == name

caller == pub

<<transitive child>>

CallExpr(callee, caller):

isSubscribeCall(callee)

𝑖𝑛 = topicArg(callee)

Callback(name, body)

Figure 4: Simplified behavioral pattern to look for reactive
message behavior.

CallExpr(callee, args):

isPublishCall(callee)

<<transitive child>>

Publisher pub(𝑚𝑜𝑢𝑡 = topic)

<<transitive child>>

args[1] = pub

Rate rate (𝑝𝑓 = frequency)

args[1] = pub

WhileStmt(condition):

isIndefinite(condition)

CallExpr(callee, args):

isFillingTimeSleep(callee) or

isConstTimeSleep(callee)

Figure 5: Simplified behavioral pattern to look for periodic
behavior.

Detecting Periodic Behavior: Periodic publishing behavior is

repeated sending of a message of the same type with a constant up-

per target frequency (note that messages do not necessarily always

have to be sent every interval). The pattern to detect periodic be-

havior is checking for publish calls that happen (transitively) within

unbounded loops that (transitively) contain a sleep call, as these

sleep calls happen periodically throughout the normal execution

of the program. To identify unbounded loops ROSInfer considers
loop conditions that are either true or ros::ok(). This pattern is

shown in Figure 5.

3.3 State Variable Detection
The key idea to infer state variables statically is to look for variables

in the code that store state information, such as ready in Figure 1.

We use the following heuristics to identify variables that represent

component state.

Usage Heuristic: The variable is used in control conditions of

architecturally-relevant behavior (i.e., functions that send messages,

functions that change state variables, and of their transitive callers).

Control conditions describe the conditions that determine whether

a statement is executed.

Scope Heuristic: The variable is in global or component-wide

scope, such as member variables of component classes or non-local

variables. Since local variables are used close to their assignments,

they are less likely to capture state information than variables that

can be changed in callbacks or other functions. This heuristic limits

the search space and complexity of the resulting models, because

control conditions can contain complex logic that defined behavior

that is not architecturally relevant.

To implement the usage heuristic ROSInfer first infers all control
conditions for all publish calls and their transitive calls and removes

conditions on variables that do not satisfy the scope heuristic and

uses constant folding to replace variables and constants with the

literals that they represent.

http://docs.ros.org/en/noetic/api/roscpp/html/classros_1_1NodeHandle.html#a302620aff50f66c4b73fc613a55c27aa
http://docs.ros.org/en/indigo/api/message_filters/html/c++/classmessage__filters_1_1SimpleFilter.html#a7a5037f91c98eece61dac30dd7aa2d0f
http://docs.ros.org/en/noetic/api/roscpp/html/classros_1_1NodeHandle.html#a17ed10bb6e221d11c53a8d35058c24a0
https://man7.org/linux/man-pages/man3/usleep.3.html
https://man7.org/linux/man-pages/man3/sleep.3.html
https://en.cppreference.com/w/cpp/thread/sleep_for
http://docs.ros.org/en/lunar/api/rostime/html/classros_1_1Duration.html#a39708cc9b2871f6b3715023ab9610043
http://docs.ros.org/en/noetic/api/rostime/html/classros_1_1Rate.html#ae5664d27cda1b17a103347560259e945
http://docs.ros.org/en/noetic/api/roscpp/html/classros_1_1NodeHandle.html#a7faad0327bfb755334b4ee22d0242549
http://docs.ros.org/en/noetic/api/roscpp/html/classros_1_1NodeHandle.html#a7faad0327bfb755334b4ee22d0242549
http://docs.ros.org/en/noetic/api/rostime/html/classros_1_1Rate.html#ad7ef59c5fb4edb69c6a9471987c3117d
http://wiki.ros.org/message_filters
http://docs.ros.org/en/noetic/api/roscpp/html/namespaceros.html#a276d68870be2125b1cde229fee013e45

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Tobias Dürschmid, Christopher S. Timperley, David Garlan, and Claire Le Goues

3.4 Transition Inference
After detecting state variables and inferring behavioral patterns for

reactive and periodic behaviors, the only information that remains

to be inferred to create complete transition functions 𝛿 are condi-

tions on state variables and state changes. ROSInfer identifies the

intra-procedural control conditions for each publish call and its

transitive function calls. In an inter-procedural analysis on the call

graph starting from the behavior’s trigger ROSInfer then combines

the control conditions of function calls ending in the publish call.

Conditions are combined using a logical AND and negated in the

case of taking the else branch of an if-statement.

To infer state changes, ROSInfer detects assignments to state

variables, constant-folds the right hand-side of the assignments,

and infers the assignments’ triggers in the same way as for other

architecturally-relevant behavior as described above. ROSInfer
then groups behaviors by triggers and state conditions and con-

structs the union of all outputs and state changes with the same

triggers and conditions.

3.5 Initial Value Inference
To infer the initial state 𝑠𝑜 ∈ 𝑆 (i.e., the initial values for each state

variable) of a component, ROSInfer searches for the first definitions
of the variables. These can be either in their declarations, in the

program entry point of the component (e.g., main) and its transitive
calls, or in statements or initializers of component class constructors.

If an initial expression is found ROSInfer attempts to constant-fold

the expression. Analogous to previous cases, values that cannot be

constant-folded are denoted with ⊤.

3.6 Implementation
We implemented ROSInfer using Clang for C/C++ as an extension

of ROSDiscover [76]. (ROSDiscover and ROSInfer do not support
Python, because C++ is the most used language in ROS [68].)

The ROS system is analyzed within a Docker container that

contains the source code, ROS packages, and other dependencies.

ROSInfer infers the API calls and its parameters, as well as AST

elements such as while statements, if statements, and assignments

and creates an abstraction of the component. Then it looks for

the patterns described in the previous section and creates a JSON

output that contains reactive, periodic, and state-based behavior

from which the state machines described in Section 2.2 can be

reconstructed. Finally, ROSInfer generates a PlusCal/TLA+ [48]

specification containing the behavior and connectors of all com-

ponents in the system configuration. To detect bugs, users can

either specify their own LTL properties or provide a list of expected

outputs to happen, from which ROSInfer auto-generates the corre-

sponding LTL properties. The implementation is openly accessible

on GitHub: https://github.com/cmu-rss-lab/rosdiscover-evaluation

4 EVALUATION
In this section we describe how we evaluate the overall approach of

API-call-guided static inference of architecturally-relevant compo-

nent behavior in ROS systems as well as the results of our evaluation

of ROSInfer’s recovery rate, recall, precision, and execution time

on five large, real-world open source ROS systems.

4.1 Experimental Setup
To evaluate ROSInfer we asked the following research questions:

RQ 1 (Recovery Rate) Results in Section 4.2

How high is ROSInfer’s recovery rate for real-world ROS sys-

tems, i.e., what percentage of inferred architecturally-relevant

behaviors can be recovered completely?

When static analysis detects message sending behavior within

a component’s source code (e.g., a message-sending API call) it

attempts to infer a complete behavioral model of what causes the

component to send this message (e.g., to what input it reacts, at what

periodic frequency it is sent, in what state it is sent). Since static

analysis cannot always recover all parts of this behavior, resulting

models can be partial (i.e., include known unknowns⊤). To measure

how often static analysis fails to infer parts of the resulting model

as a measure of how complete and precise inferred models are in

the practice we calculate the recovery rate for different behavior

for real-world ROS components.

RQ 2 (Recall) Results in Section 4.3

How high is ROSInfer’s recall for real-world ROS systems, i.e.,

what percentage of architecturally-relevant component behav-

ior can ROSInfer infer correctly?

As noted earlier, our approach is based on the assumption that

developers of ROS systems commonly use the ROS API and be-

havioral patterns to implement architecturally-relevant component

behavior. So even if the static analysis could recover all elements

of detected behaviors it might miss behaviors that violate this as-

sumption. To validate this assumption and to evaluate how many

behaviors ROSInfer missed we measured the recall compared to

a ground truth. This metric measures the degree of completeness

of the set of inferred behaviors on real-world ROS systems. To

measure this, we executed ROSInfer on real ROS components with

corresponding ground truth models and compared the output for

different behavior types.

RQ 3 (Precision) Results in Section 4.4

How high is ROSInfer’s precision for real-world ROS systems,

i.e., what percentage of inferred architecturally-relevant com-

ponent behaviors are true positives?

Since ROSInfer uses heuristics to infer architecturally-relevant

behaviors, it can incorrectly classify behaviors as periodic or reac-

tive to a component event or component input, and can include

unnecessary or incorrect state variables or state transitions. To

evaluate how many false positives are in the inferred models, i.e.,

how often ROSInfer infers behaviors that do not exist in the real

program, we measured the precision of inferred models compared

to a ground truth. This metric measures the degree of soundness of

ROSInfer’s inference heuristics on real-world ROS systems.

Overview of Evaluation Systems: For these research ques-

tions we evaluated ROSInfer on the data set presented in Timperley

et al. [76], consisting of five large real-world open source systems:

https://github.com/cmu-rss-lab/rosdiscover-evaluation

ROSInfer: Statically Inferring Behavioral Component Models for ROS-based Robotics Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Systems used for evaluation with their stars on GitHub (as
of 17th July 2023), lines of XML configuration files, lines of code in-
cluding their dependent ROS packages, and number of components.

System Stars Lines of XML Lines of Code Components

AutoRally 685 43 455 190 340 26

Autoware 7100 30 771 250 509 230

Fetch 166 149 664 434 022 94

Husky 373 54 699 876 405 111

TurtleBot 279 1 237 887 1 596 546 108

Autware.AI [39], AutoRally [25], Fetch [81], Husky, and Turtle-

bot [72]. To demonstrate the complexity and size of the systems

used for evaluation, statistics are shown in Table 1. Some compo-

nents are part of multiple of these systems due to component reuse,

leaving 550 unique components in total.

Ground Truth Models: Measuring recall and precision re-

quires a ground truth to compare to. Unfortunately, there is no

reliable ground truth available for the architectural behavior of

ROS components. Therefore, we needed to create ground truth

models by hand by via manual source code inspection of the five

ROS systems mentioned in Section 4.1. Due to the large size and

complexity of these systems, we could not construct models for all

550 components. Therefore, we randomly picked components for

each system (excluding components that are test or demo compo-

nents that do not contain architecturally-relevant behavior). The

first two authors of the paper (one who is closely familiar with the

implementation of ROSInfer and one who is not) evenly split the

work.

To ensure consistency we first created a protocol for manual

model inference, which is included in the replication package. The

protocol includes steps to infer behaviors, special cases to look for,

a consistent format notation, and descriptions of how to handle

exceptional cases that do not fit into the given format.

To validate the accuracy of manually inferred models, the two

authors who created the models measured their agreement of an

overlap of 21 models (14.1 % of total) that were inferred by both au-

thors, intentionally including some of the most complex models in

this overlap. They agreed completely on 86 % of these components

and partially on the remaining three components. After a discussion

of the few differences in inferred models, they identified one case

in which one author missed a type of publishing behavior, which

resulted in revising existing models to fix their representation, and

two cases of inaccurately modeled behavior that resulted in refined

ground truth models, an updated protocol for inferring models, and

updating existing models to ensure their correctness.

All 155 hand-written models are also included in the replica-

tion package and are available as a data set for other researchers

studying behavioral component models of ROS-based systems.

Threats to Validity: With respect to internal validity, the

ground-truth models were inferred by two of the paper’s authors

who have not been involved in the development of the case study

system. Since the creation of formal models for complex compo-

nent behavior is error-prone and requires deep understanding of

the domain, we cannot guarantee the correctness or completeness

of all models. We attempted to reduce this threat to validity by mea-

suring agreement between authors on model on a certain portion

of handwritten models.

With respect to external validity, the results of the evaluation

might not necessarily generalize to other ROS systems if their usage

of the ROS API or patterns of implementing architecturally rele-

vant behavior is significantly different from the five case study sys-

tems. We reduced this threat by selecting diverse case studies with

Autoware and AutoRally being mostly self-contained industrially-

developed systems and Husky, Fetch, and Turtlebot being represen-

tative for typical open-source systems that are developed without

central organization.

4.2 Measuring Recovery Rate (RQ1)
Methodology: As discussed in Section 3, ROSInfer denotes values
that cannot be statically recovered with ⊤ to indicate unknown

values. So the main metric for the recovery rate is how often ⊤ is

included in parts of the resulting model.

We ran ROSInfer on all 550 components of the five systems

presented in Section 4.1. Components that are included in multiple

systems only count once. For 16 components the static analysis

crashed due to errors in Clang, so these components are excluded

from the evaluation, leaving 534. For each type of architectural

behavior we then calculated the percentage of unknowns included

in inferred values (i.e., target frequencies for periodic behavior,

triggering events or callbacks for reactive behavior, initial values

for state variables, and new values for state transitions). These

numbers represent how well ROSInfer can infer all parameters of

a detected behavior.

Further, the trigger types recovery ratemetric measures how often

ROSInfer can recover the trigger for detected publishing behavior.

Trigger Types Recovery Rate (Evaluation Metric)

The trigger types recovery rate approximates the inferred propor-

tion of the total architecturally-relevant component behavior by

measuring the percentage of message publishing calls for which

ROSInfer can infer the cause of the behavior (i.e., for which a

behavioral pattern with corresponding trigger was detected).

Note that this metric overapproximates recall in cases in which

publish calls are hidden in inaccessible source code (e.g., in DLLs)

but underapproximates recall in cases in which publish calls happen

within uncalled callbacks (e.g., XbeeCoordinator and obstacle_sim).

After the quantitative analysis, we manually inspected each case

of unknown values to conduct an in-depth qualitative analysis of

the limitations of ROSInfer using open coding and linked examples.

Results for RQ 1 (Recovery Rate) See Table 2

In a exhaustive analysis of five large real-world ROS systems

with 534 components the overall trigger types recovery rate
is 87%. The proportion of inferable values is 91 % for periodic

rates, 100 % for reactive triggers, 72 % for state variable initial

values, and 84 % for state changes.

Results: Detailed quantitative results are shown in Table 2. The

high trigger types recovery rate confirms the Behavioral Pattern

https://github.com/AutoRally/autorally/tree/c2692f2
https://github.com/Autoware-AI/autoware.ai/tree/5c46036b02f08774a325c4929df121422ea73fab
https://github.com/fetchrobotics/fetch_ros/tree/0.8.3
https://github.com/husky/husky/tree/0.4.10
https://github.com/turtlebot/turtlebot/tree/2.4.2
https://github.com/AutoRally/autorally/blob/c2692f2970da6874ad9ddfeea3908adaf05b4b09/autorally_core/src/xbee/XbeeCoordinator.cpp#L78C9-L78C24
https://github.com/autowarefoundation/autoware/blob/5c46036b02f08774a325c4929df121422ea73fab/ros/src/computing/planning/motion/packages/astar_planner/nodes/obstacle_avoid/obstacle_sim/obstacle_sim.cpp#L116

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Tobias Dürschmid, Christopher S. Timperley, David Garlan, and Claire Le Goues

Table 2: Results for RQ1: The trigger types recovery rate is the percentage of inferred publish calls for which ROSInfer can
infer what kind of trigger causes that behavior (periodic or reactive). For each sub-type of behavior, percentages show how
many of that type do not contain unknowns (⊤) in the inferred modes of a total of 534 components of the five large real-world
systems presented in Section 4.1. 𝑁 is the total number of behaviors of the respective type inferred by ROSInfer (all publish
calls in the case of trigger types). The All row counts components only once, even if they are included in multiple systems.

System Trigger Types Periodic Rates Reactive Triggers Initial States State Changes

AutoRally 66.0 % (𝑁 = 47) 83.3 % (𝑁 = 18) 100.0 % (𝑁 = 13) 50.0 % (𝑁 = 4) 50.0 % (𝑁 = 2)

Autoware 89.0 % (𝑁 = 465) 92.9 % (𝑁 = 99) 100.0 % (𝑁 = 315) 65.4 % (𝑁 = 81) 80.9 % (𝑁 = 230)

Fetch 81.5 % (𝑁 = 27) 0.0 % (𝑁 = 1) 100.0 % (𝑁 = 21) 100.0 % (𝑁 = 3) 100.0 % (𝑁 = 2)

Husky 91.7 % (𝑁 = 48) 93.3 % (𝑁 = 15) 100.0 % (𝑁 = 29) 50.0 % (𝑁 = 8) 100.0 % (𝑁 = 6)

Turtlebot 84.2 % (𝑁 = 38) 66.7 % (𝑁 = 12) 100.0 % (𝑁 = 20) 80.0 % (𝑁 = 25) 100.0 % (𝑁 = 17)

All 86.8 % (𝑁 = 638) 91.1 % (𝑁 = 158) 100.0 % (𝑁 = 396) 72.0 % (𝑁 = 125) 83.8 % (𝑁 = 277)

Table 3: Recall and precision of ROSInfer based a comparison with 149 manually inferred component models. 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁

are the number of true positives, false positives, and false negatives compared to the ground truth models.

System Ground Truth Periodic Behaviors Reactive Behaviors State Variables State Transitions
Component Models 𝑇𝑃 𝐹𝑁 𝐹𝑃 𝑇𝑃 𝐹𝑁 𝐹𝑃 𝑇𝑃 𝐹𝑁 𝐹𝑃 𝑇𝑃 𝐹𝑁 𝐹𝑃

AutoRally 14 14 1 0 11 10 0 1 2 3 1 3 0

Autoware 119 22 2 0 146 19 15 30 10 8 42 13 6

Fetch 11 1 0 0 8 5 0 3 0 0 2 1 0

Turtlebot 5 2 0 0 2 3 2 0 2 0 0 3 0

All 149 39 3 0 167 37 17 34 14 11 45 20 6

Recall 92.9 % (of 42) 81.9 % (of 204) 70.8 % (of 48) 69.2 % (of 65)

Precision 100.0 % (of 39) 90.8 % (of 184) 75.6 % (of 45) 88.2 % (of 51)

Usage observation, because 87 % of all message sending behavior

in the evaluated components could be automatically classified to

conform to one behavioral pattern. AutoRally has the lowest trigger

types recovery rate, because many components respond to inputs

of serial devices with project-specific API (e.g., AutoRallyChassis,
GPSHemisphere).

Cases in which ROSInfer cannot recover periodic rates include

rates that are loaded from component parameters (e.g., runStop,
fake_camera, adis16470_node, robot_pose_ekf, yocs_virtual_sensor,

lidar_fake_perception, AutoRallyChassis, watchdog_node), return
values of function calls (e.g., robot_pose_ekf), conditional be-
havior (e.g., yocs_virtual_sensor).

Cases in which ROSInfer cannot recover initial states include
primitive types with implicit initialization (e.g., decision_maker_-

node), ignored functions (e.g., tl_switch, decision_maker_node,

way_planner_core).

State transitions include unknowns if and only if the right hand-

side of assignments ot state variables cannot be constant-folded.

Reactive triggers can be recovered completely, since ROSInfer’s
current implementation does not include component events or

message inputs that can include unknown values.

4.3 Measuring Recall (RQ2)
Methodology: After creating the handwritten models as ground

truth (see Section 4.1) we executed ROSInfer on the source code

and compared the results by treating the handwritten models as

ground truth. The existence of model elements is compared auto-

matically, while expressions in conditions are compared by humans

to judge whether they are logically equivalent. After the quantita-

tive analysis, we then manually inspected each false negative to

conduct a qualitative root cause analysis of missed behaviors.

Results for RQ 2 (Recall) See Table 3

In a ground-truth comparison with 149 components ROSInfer
has a recall of 93 % for periodic behavior, 82 % for reactive be-

havior, 71 % for state variables, and 69% for state transitions.

Results: Detailed quantitative results are shown in Table 3.

Cases in which ROSInfer cannot detect reactive behavior in-

clude the use of virtual methods (e.g., joystick_teleop), behavior
that is triggered by other events than receiving a message in sub-

scriber callback, such as reacting to messages from external devices

received via serial ports (e.g., vg440_node), Mqtt messages (e.g.,

mqtt_receiver), or CAN-Bus (e.g., vehicle_receiver), our approach

cannot infer the trigger for this behavior.

Cases in which ROSInfer cannot recover state variables include

complicated object logic, such as whether a list or map is empty

(e.g., vscan2image). Figure 6 shows an example of this. This requires

a deeper understanding of the objects owned by the component that

are used to represent its state and is therefore a limitation of the

approach. Conditions on object fields can contain implicit depen-

dencies that cannot easily be inferred statically. For example when

a subscriber callback initializes the image stored in a state variable

https://github.com/AutoRally/autorally/blob/c2692f2970da6874ad9ddfeea3908adaf05b4b09/autorally_core/src/autorally_chassis/AutoRallyChassis.cpp#L104
https://github.com/AutoRally/autorally/blob/c2692f2970da6874ad9ddfeea3908adaf05b4b09/autorally_core/src/gps/GPSHemisphere.cpp#L125-L128
https://github.com/AutoRally/autorally/blob/c2692f2970da6874ad9ddfeea3908adaf05b4b09/autorally_core/src/RunStop/RunStop.cpp#L63
https://github.com/autowarefoundation/autoware/blob/5c46036b02f08774a325c4929df121422ea73fab/ros/src/util/packages/fake_drivers/nodes/fake_camera/fake_camera.cpp#L64
https://github.com/autowarefoundation/autoware/blob/5c46036b02f08774a325c4929df121422ea73fab/ros/src/sensing/drivers/imu/packages/analog_devices/src/adis16470_node.cpp#L56
https://github.com/ros-planning/robot_pose_ekf/blob/fd6cef32b447e8b344a1111373e515aa2f8bfc50/src/odom_estimation_node.cpp#L87
https://github.com/yujinrobot/yujin_ocs/blob/0.8.2/yocs_virtual_sensor/src/virtual_sensor_node.cpp#L35
https://github.com/autowarefoundation/autoware/blob/5c46036b02f08774a325c4929df121422ea73fab/ros/src/computing/perception/detection/lidar_detector/packages/lidar_fake_perception/nodes/lidar_fake_perception.cpp#L10C45-L10C58
https://github.com/AutoRally/autorally/blob/c2692f2970da6874ad9ddfeea3908adaf05b4b09/autorally_core/src/autorally_chassis/AutoRallyChassis.cpp#L84
https://github.com/autowarefoundation/autoware/blob/5c46036b02f08774a325c4929df121422ea73fab/ros/src/common/libs/diagnostics_lib/diag_lib/src/watchdog.cpp#L10
https://github.com/ros-planning/robot_pose_ekf/blob/fd6cef32b447e8b344a1111373e515aa2f8bfc50/src/odom_estimation_node.cpp#L101C37-L101C37
https://github.com/yujinrobot/yujin_ocs/blob/0.8.2/yocs_virtual_sensor/src/virtual_sensor_node.cpp#L50-L51
https://github.com/autowarefoundation/autoware/blob/5c46036b02f08774a325c4929df121422ea73fab/ros/src/computing/planning/decision/packages/decision_maker/include/decision_maker_node.hpp#L109
https://github.com/autowarefoundation/autoware/blob/5c46036b02f08774a325c4929df121422ea73fab/ros/src/computing/planning/decision/packages/decision_maker/include/decision_maker_node.hpp#L109
https://github.com/autowarefoundation/autoware/blob/5c46036b02f08774a325c4929df121422ea73fab/ros/src/computing/perception/detection/trafficlight_recognizer/nodes/tl_switch/tl_switch.cpp#L67
https://github.com/autowarefoundation/autoware/blob/5c46036b02f08774a325c4929df121422ea73fab/ros/src/computing/planning/decision/packages/decision_maker/include/decision_maker_node.hpp#L246C12-L246C12
https://github.com/autowarefoundation/autoware/blob/5c46036b02f08774a325c4929df121422ea73fab/ros/src/computing/planning/mission/packages/way_planner/include/way_planner_core.h#L87
https://github.com/ZebraDevs/fetch_ros/blob/9c38de60834e6e51e676a302337e9ca56436e94f/fetch_teleop/src/joystick_teleop.cpp#L71
https://github.com/autowarefoundation/autoware/blob/5c46036b02f08774a325c4929df121422ea73fab/ros/src/sensing/drivers/imu/packages/memsic/nodes/vg440/vg440_node.cpp#L406
https://github.com/autowarefoundation/autoware/blob/5c46036b02f08774a325c4929df121422ea73fab/ros/src/socket/packages/mqtt_socket/nodes/mqtt_receiver/mqtt_receiver.cpp#L133C13-L133C25
https://github.com/autowarefoundation/autoware/blob/5c46036b02f08774a325c4929df121422ea73fab/ros/src/socket/packages/vehicle_socket/nodes/vehicle_receiver/vehicle_receiver.cpp#L157
https://github.com/autowarefoundation/autoware/blob/5c46036b02f08774a325c4929df121422ea73fab/ros/src/sensing/fusion/packages/points2image/nodes/vscan2image/vscan2image.cpp#L72

ROSInfer: Statically Inferring Behavioral Component Models for ROS-based Robotics Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

lane_planner::vmap::VectorMap all_vmap;

void cache_point(const vector_map::PointArray& msg)

{

 all_vmap.points = msg.data;

 update_values();

}

void update_values()

{

 if (all_vmap.points.empty() || all_vmap.lanes.empty()

 || all_vmap.nodes.empty())

 return;

 [...]

 lane_planner::vmap::publish_add_marker([...]);

}

State Change

to Non-Empty

State Condition

Message Output

Figure 6: Simplified code snippet showing an example from
waypoint_clicker in Autoware.AI for which our approach
cannot recover the state machine. The analysis would need
to model the state of a vector map containing multiple ar-
rays and identify that the assignment in the cache_point
subscriber callback affects the return value of the empty call.

whose width and height are checked to be positive numbers in

a control condition (image.width > 0 && image.height > 0) a
human developer can infer that this condition refers to checking

whether the initialization in the subscriber callback has been called

implying that the component has received the message. This de-

pendency that is implicit due to complex logic within the image

object cannot be inferred statically.

4.4 Measuring Precision (RQ3)
Methodology: For each behavior category we calculated the num-

ber of inferred behaviors that are part of the output of ROSInfer but
not part of the ground truth models. We then manually inspected

each false positive to conduct a qualitative root cause analysis of

incorrectly classified behaviors.

Results for RQ 3 (Precision) See Table 3

In a ground-truth comparison with 149 components ROSInfer
has an precision of 100 % for periodic behavior, 91 % for reactive

behavior, 76 % for state variables, and 88 % for state transitions.

Results: Detailed quantitative results are shown in Table 3.

False positives for reactive behavior are caused by a limitation of

our current implementation that ignores state conditions of periodic

behavior in main and therefore treats it as reacting to the event

“component-started”, which can be fixed in the future.

False positives of state variables are caused by mistaking a

configuration parameter for a state variable (e.g., amcl), mis-

taking variable identity due to overloaded variable names (e.g.,

control dependencies on assignments to another state variable
false positive (e.g., pos_downloader), and control dependencies

on assignments to another state variable false positive (e.g.,

pos_downloader).

False positives of state transitions are caused by false positives

of the corresponding state variables.

4.5 Measuring Execution Time
When running ROSInfer on Autoware.AI on a server with 4 Intel(R)
Xeon(R) Gold 6240 CPUs (each has 18 cores at 2.6 GHz) with 256GB

RAM, the static analysis took on average 36.5 s per component. The

fully automated analysis of the entire Autoware.AI system took 3.8 h

and much shorter for the other systems (Autorally: 10.2min, Fetch:

29.9min, Husky: 29.2min, Turtlebot: 37.7min). This indicates that

the static analysis scales to real-world systems and could integrate

well into iterative software development practices.

In practice, static model inference approaches like the presented

approach would integrate well in iterative development processes

since model inference supports automatic regeneration of models

when the sources change. Changes to the code base require regener-

ation of only the components that are affected by the change, since

ROSInfer infers which source files are required to infer each com-

ponent model. This would dramatically reduce the time to update

the system’s behavioral model after the initial execution.

The effort it took to create the 155 handwritten models of this

evaluation was approximately 120 hours of manual labor.
3
In prac-

tice, the developer time saved would be lower than 120 hours, be-

cause developers potentially need to replace the known unknowns

(⊤) with correct values and cannot fully rely on the inferred mod-

els being complete. While in this paper we do not quantify the

saved effort, we present these numbers to demonstrate that the

approach can save a significant portion of time to infer models,

making model-based analysis more accessible, and economical.

5 DISCUSSION
In this section we discuss how the advantages and limitations of

the approach fit into a practical software engineering context.

5.1 Lessons Learned about ROS Components
When building the behavioral models for ROS components and

inspecting the root cause for missed behaviors we noticed:

(1) Many components are designed to process input streams and

publish processed outputs like a pipes and filters architecture.

These components are stateless and usually produce a single

output for each input that they receive.

(2) Components that maintain states are often components that

start to publish periodically after receiving a set of input

messages that are used to initialize the component, such as

the example shown in Figure 1.

(3) Only a few components implement a complex state machine.

Most explicit or implicit state variables are booleans and

only few components have more than three state variables.

(4) While the state machines that model the behavior of the com-

ponent might be less complex, developers sometimes use

more complex language features to express them than would

be necessary (see Figure 6). This makes the code more exten-

sible and easier to read by human developers, but harder to

analyze using static analysis.

3
Models were inferred by authors of this paper who have advanced knowledge of

C++, a background in software architecture and formal modeling, are knowledgeable

in robotics and Autoware.AI but have not been involved in its development. Model

inference times will vary based on the expertise in the domain and experience with

the system. This number is only intended to provide an informal estimate of the effort.

https://github.com/autowarefoundation/autoware/blob/5c46036b02f08774a325c4929df121422ea73fab/ros/src/computing/planning/motion/packages/waypoint_maker/nodes/waypoint_clicker/waypoint_clicker.cpp#L71
https://github.com/ros-gbp/navigation-release/blob/upstream/1.16.7/amcl/src/amcl_node.cpp#L445C37-L445C50
https://github.com/autowarefoundation/autoware/blob/5c46036b02f08774a325c4929df121422ea73fab/ros/src/data/packages/pos_db/nodes/pos_downloader/pos_downloader.cpp#L397
https://github.com/autowarefoundation/autoware/blob/5c46036b02f08774a325c4929df121422ea73fab/ros/src/data/packages/pos_db/nodes/pos_downloader/pos_downloader.cpp#L398

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Tobias Dürschmid, Christopher S. Timperley, David Garlan, and Claire Le Goues

5.2 Incomplete Models
As discussed in the approach, inferred models can be incomplete,

due to limitations discussed in the evaluation. There are two types

of incompleteness: known unknowns (i.e., the analysis can infer the

type of behavior but cannot reconstruct all its required elements so

that the resulting model contains the keyword ⊤ representing an

unknown value) and unknown unknowns (i.e., the analysis does not

detect an instance of architecturally-relevant behavior so that this

behavior is entirely missing from the resulting model). Examples

for known unknowns are frequencies of periodic publishing, topic

names, initial values or other assignments of state variables, or val-

ues that state variables are compared to in conditions. They occur

when other variables are referenced that cannot be constant-folded,

when C++ language features are used that the static analysis imple-

mentation does not support yet, when values are read from external

sources, such as run-time inputs or files, or when developers follow

the behavioral pattern but use too dynamic language features for

static analysis to be able to identify the values.

In practice, users of ROSInfer can more easily deal with known

unknowns, because ROSInfer directly points them to the place in

the code for which it was unable to reconstruct the value. Users

can then figure out the values and replace the known unknowns

in the model with accurate values. Since they only need to fill in

the blanks for some values, this task is much easier and less time-

consuming than building the entire model from scratch. In some

cases, known unknonws can be reduced with more engineering

effort to improve the static analysis, but cannot be fully eliminated.

Having incomplete models would still be preferable to having no

models, because even incomplete models allow finding behavioral

architecture composition bugs that would not have been found

otherwise.

Unknown unknowns are more limiting in practice, since it is

much harder for users to identify that information is missing from

the generated models. Unknown unknowns can be reduced by

extending the list of behavioral patterns to look for or by adding

the APIs of commonly used libraries, but cannot be fully eliminated.

5.3 Real-World Bugs Found
To demonstrate the real-world effectiveness of ROSInfer, we iden-
tified documented behavioral architecture composition bugs within

the data set presented in Timperley et al. [76], the only open set of

architecture composition bugs in ROS currently known to us. Three

of these bugs (autoware-02, autoware-03, autoware-10) can be clas-

sified as behavioral architecture composition bugs. Autoware-02

is shown in Figure 1. The other two also result from required in-

puts for important component behavior not being connected to

publishers. We ran ROSInfer on these systems, generated Plus-

Cal/TLA+ specifications and checked that expected outputs happen

eventually. ROSInfer found all of these bugs based on a given list

of components in the system configuration, a desired output to

check for, and configuration parameter assignments. The resulting

models are available in the supplemental material.

5.4 Coding Style Guidelines
Unlike many open-source ROS systems, most industrially devel-

oped projects follow coding style guidelines that narrow down the

expected kinds of behaviors by telling developers to implement

certain types of code in a certain way. We expect the recall of our

approach to benefit from this, because fewer cases of unnecessar-

ily complex versions of simpler code would exist. This effect can

become even stronger if coding styles related to specifying archi-

tecturally relevant behavior are established, as almost all cases in

which our approach cannot correctly infer architecturally-relevant

behavior, the corresponding code could be refactored towards more

analyzable code. For example, coding style guidelines, such as “com-

ponent states should be explicitly modeled as variables in the code”

to avoid the limitation described in Figure 6 by replacing empty()
calls with a state variable, “state variables should be initialized ex-

plicitly” to avoid unknown or ambiguous initial states, or “ROS

connectors should be used where possible” to avoid over-use of

project-specific APIs. Similarly to how testability became a goal

of software design to reduce the effort of ensuring correctness via

testing, analyzability of code could become a future design goal of

ROS code to supporting the automatic inference of rich behavioral

models for automated formal analysis.

6 RELATEDWORK
To demonstrate the novelty of this work, we discuss other analy-

ses that have been performed on robotics systems, approaches to

recover static architectures, and dynamic analyses of behavioral

models and explain how our work differs from them.

6.1 Analysis of Robot Systems
Static analysis and formal model-based analysis have been used to

automatically find bugs in robot systems before [4, 32, 51, 63]. For

example, the systems Phriky [62], Phys [38], and Physframe [37]

use type checking to find inconsistencies in assignments based on

physical units or 3D transformations in ROS code.

Furthermore, Swarmbug [34] finds configuration bugs in robot

systems that result from misconfigured algorithmic parameters,

causing the system to behave unexpectedly.

These approaches focus on the analysis of bugs that result from

coding errors that are localized in a few places of the system. In

contrast, our work aims to reconstruct models that can be used to

identify incorrect composition or connection of components and

therefore focus on architectural bugs.

6.2 Inference of Structural Architectures
Most approaches for static recovery of software architectures recon-

struct structural views of software modules from the perspective

of a developer [3, 15, 18, 21, 22, 24, 28, 53, 55, 56, 64, 71, 73]. Since

they show the code before compiling it, the module view does not

show the relationships of components during run time [16] and

therefore cannot find behavioral bugs.

DeSARM [65], SAMEtech [33] are dynamic approaches to recon-

struct component-port-connector (CPC) models. ROSDiscover [76],

HAROS [67, 69], and the tool by Witte et al. [82] can statically

reconstruct CPC models for robotics systems. CPC models describe

the types of inputs that a component receives, the types of outputs

it produces, and to what other components their input and out-

put ports are connected to. However, CPC models do not contain

information about how a component reacts to inputs (e.g., what

ROSInfer: Statically Inferring Behavioral Component Models for ROS-based Robotics Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

kind of output it produces in response to an input), whether an

output port is triggered sporadically or periodically, and whether

the component’s behavior is dependent on states. Therefore, CPC

models cannot be used to analyze the data flow within a system.

While CPC models identify the communication channels that

components use to interact with the rest of the system they do not

describe the conditions underwhich communications actually occur.

They do not contain information about how a component reacts to

inputs (e.g., what kind of output it produces in response to an input),

whether an output port is triggered sporadically or periodically,

and whether the component’s behavior is dependent on states. In

contrast, ROSInfer builds upon ROSDiscover’s implementation and

output to produce behavioral component models that describe how
a node reacts to incoming messages (e.g., publishing a message to

a different topic; switching into a different state) and timing-based

triggers (e.g., publishing a status message every 50 ms). Therefore,

ROSInfer allows to find behavioral architectural composition bugs,

such as the ones described in Section 5.3 that ROSInfer found.

6.3 Dynamic Inference of Behaviors
Behavioral models of components can be inferred using dynamic

analysis by observing the component behavior of representative

execution traces. For example, Kieker [29, 77], DiscoTect [70] and

Perfume [61] construct state machines from event traces obtained

by run time monitoring. Similar approaches also use method invari-

ants [46], LTL property templates [50] to increase the effectiveness.

Domain-specific approaches have been proposed for for CORBA

systems [58] or telecommunication systems [57]. The main limita-

tion of dynamic approaches that are based on mere observation is

that they can only measure correlations between inputs and states

and outputs and cannot make claims about causal relationships.

Additionally, approaches relying on dynamic execution might miss

cases in rarely executed software. In contrast to this, our approach

analyzes the control and data flow of the source code and therefore

has the capabilities to differentiate concurrent behavior that just

coincidentally happens after an input or state change from behavior

that is caused by an event. Furthermore, dynamic approaches re-

quire either an accurate simulator or real robot hardware to produce

reliable results and need to execute a large number of representative

traces through the system in real time, which can increase the time

and cost of the model creation for computation-intense systems

compared to static analysis approaches, such as ROSInfer.

7 CONCLUSIONS
In this paper we have shown that looking for specific API calls of the

ROS framework and commonly used behavioral implementation

patterns enable the effective static inference of models that capture

architecturally-relevant component behavior with high precision

and recall. This work is a contribution towards making well-proven

and powerful but infrequently used methods of model-based analy-

sis more accessible and economical in practice, potentially leading

to robotics systems becoming safer and more robust. Due to its

potential to integrate well into practical software development

environments with continuous integration and potentially higher

accuracy with established coding style guidelines, we believe that

API-call-guided static inference can have a significant impact on

practice. While this paper focused only on ROS-based systems, we

believe that API-call-based inference of component behavior is

a promising approach that could generalize to other frameworks

within the domain of cyber-physical systems and inspire future

work that applies this approach to other ecosystems.

8 FUTUREWORK
We envision this contribution to enable the following future work:

Automatic Generation of Documentation: Automated in-

ference of behavior models can support the generation of docu-

mentation for components, especially for reusable components. In

cases in which components need to receive a set of initialization

inputs to function properly (such as the example from Figure 1), in-

ference of architecturally-relevant component models can be used

to demonstrate which inputs are required for which output.

Automated Program Repair: Since models that were inferred

from source code have the advantage of retaining a mapping be-

tween source code locations and model elements a repair patch for

the model could be translated back to code. This opens motivates

future work on model-repair translations back to code.

Repository Mining: Automatic inference of component behav-

ioral models enables large-scale empirical research on the develop-

ment and evolution of component behavior and inter-component

communication patterns in complex robotics systems.

Test Generation: Information about what input messages

change the component to a state in which it executes different

behavior can be helpful to systematically generate test cases to

cover a larger portion of the component’s behavior.

Combination of Static and Dynamic Analysis: The lim-

itations shown in the results of RQ1 can be overcome with the

use of dynamic analysis. Furthermore, static analysis cannot infer

execution times of tasks, producing models that cannot be used

for most kinds of performance analysis, bottleneck analysis, or

analysis of race condition. Results from from static analysis can

inform systematic test generation and instrumentation of code to

specifically obtain information that is missing in statically inferred

models to increase recovery rate and recall. Furthermore, testing

for the existence of inferred behavior can reduce false positives.

Generalization to Other Frameworks: The approach of API-

call-based static inference of component behavior is not inherently

specific to the ROS framework. Other component frameworks, such

as NASA’s FPrime framework [8], that provide APIs for component

interaction mechanisms could implement this approach as well.

ACKNOWLEDGMENTS
The authors would also like to thank the anonymous referees for

their valuable comments and helpful suggestions. This work has

been funded in part by the NSF under award numbers CCF-1750116

and CNS-2148301.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Tobias Dürschmid, Christopher S. Timperley, David Garlan, and Claire Le Goues

REFERENCES
[1] Afsoon Afzal, Claire Le Goues, Michael Hilton, and Christopher S. Timperley.

2020. A Study on Challenges of Testing Robotic Systems. In International
Conference on Software Testing, Validation and Verification (ICST ’20), 96–107.
doi: 10.1109/ICST46399.2020.00020.

[2] Aakash Ahmad and Muhammad Ali Babar. 2016. Software Architectures for

Robotic Systems: A Systematic Mapping Study. Journal of Systems and Software,
122, (December 2016), 16–39. doi: 10.1016/j.jss.2016.08.039.

[3] Periklis Andritsos, Panayiotis Tsaparas, Renée J. Miller, and Kenneth C. Sevcik.

2004. LIMBO: Scalable Clustering of Categorical Data. In International Con-
ference on Extending Database Technology (EDBT ’04) - Advances in Database
Technology. Springer, 123–146. doi: 10.1007/978-3-540-24741-8_9.

[4] Hugo Araujo, Mohammad Reza Mousavi, and Mahsa Varshosaz. 2023. Testing,

Validation, and Verification of Robotic and Autonomous Systems: A Systematic

Review. ACM Trans. Softw. Eng. Methodol., 32, 2, Article 51, (March 2023), 61

pages. doi: 10.1145/3542945.

[5] Janis Arents, Valters Abolins, Janis Judvaitis, Oskars Vismanis, Aly Oraby, and

Kaspars Ozols. 2021. Human-Robot Collaboration Trends and Safety Aspects:

A Systematic Review. Journal of Sensor and Actuator Networks, 10, 3, (July 2021).
doi: 10.3390/jsan10030048.

[6] Steffen Becker, Lars Grunske, Raffaela Mirandola, and Sven Overhage. 2006.

Performance Prediction of Component-Based Systems. In Architecting Systems
with Trustworthy Components. Springer, 169–192. doi: 10.1007/11786160_10.

[7] Steffen Becker, Heiko Koziolek, and Ralf Reussner. 2009. The Palladio com-

ponent model for model-driven performance prediction. Journal of Systems
and Software, 82, 1, 3–22. Special Issue: Software Performance - Modeling and

Analysis. doi: 10.1016/j.jss.2008.03.066.

[8] Robert Bocchino, Timothy Canham, Garth Watney, Leonard Reder, and Jeffrey

Levison. 2018. F Prime: An Open-Source Framework for Small-Scale Flight

Software Systems. In Small Satellite Conference number Advanced Technologies

II, 328. https://digitalcommons.usu.edu/smallsat/2018/all2018/328/.

[9] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen Nguyen,

Thomas Noll, and Marco Roveri. 2011. Safety, dependability and performance

analysis of extended aadl models. The Computer Journal, 54, 5, (May 2011),

754–775. doi: 10.1093/comjnl/bxq024.

[10] Alex Brooks, Tobias Kaupp, Alexei Makarenko, Stefan Williams, and Andres

Orebäck. 2005. Towards component-based robotics. In International Conference
on Intelligent Robots and Systems (IROS ’05). IEEE, 163–168. doi: 10.1109/IROS.
2005.1545523.

[11] Franz Brosch, Heiki Koziolek, Barbora Buhnova, and Ralf Reussner. 2012.

Architecture-Based Reliability Prediction with the Palladio Component Model.

IEEE Transactions on Software Engineering (TSE), 38, 6, (November 2012), 1319–

1339. doi: 10.1109/TSE.2011.94.

[12] Davide Brugali. 2015. Model-Driven Software Engineering in Robotics. IEEE
Robotics & Automation Magazine, 22, 3, 155–166. doi: 10 .1109/MRA.2015 .

2452201.

[13] Davide Brugali, Alex Brooks, AnthonyCowley, Carle Côté, Antonio C. Domínguez-

Brito, Dominic Létourneau, Françis Michaud, and Christian Schlegel. 2007.

Trends in Component-Based Robotics. In Software Engineering for Experimen-
tal Robotics. Springer, 135–142. doi: 10.1007/978-3-540-68951-5_8.

[14] Paulo Canelas, Miguel Tavares, Ricardo Cordeiro, Alcides Fonseca, and Christo-

pher S. Timperley. 2022. An Experience Report on Challenges in Learning

the Robot Operating System. In International Workshop on Robotics Software
Engineering (RoSE ’22), 33–38. doi: 10.1145/3526071.3527521.

[15] Landry Chouambe, Benjamin Klatt, and Klaus Krogmann. 2008. Reverse Engi-

neering Software-Models of Component-Based Systems. In European Confer-
ence on Software Maintenance and Reengineering (CSMR ’08). IEEE, 93–102. doi:
10.1109/CSMR.2008.4493304.

[16] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Judith

Stafford, Reed Little, and Robert Nord. 2003. Documenting Software Architec-
tures: Views and Beyond. Addison-Wesley Professional.

[17] Zack Coker, David Gray Widder, Claire Le Goues, Christopher Bogart, and

Joshua Sunshine. 2019. A Qualitative Study on Framework Debugging. In

International Conference on Software Maintenance and Evolution (ICSME ’19),
568–579. doi: 10.1109/ICSME.2019.00091.

[18] Anna Corazza, Sergio Di Martino, Valerio Maggio, and Giuseppe Scanniello.

2011. Investigating the use of lexical information for software system clustering.

In European Conference on Software Maintenance and Reengineering (CSMR ’11).
IEEE, 35–44. doi: 10.1109/CSMR.2011.8.

[19] Martin Dahl, Kristofer Bengtsson, Martin Fabian, and Petter Falkman. 2017.

Automatic Modeling and Simulation of Robot Program Behavior in Integrated

Virtual Preparation and Commissioning. Procedia Manufacturing, 11, 284–291.
International Conference on Flexible Automation and Intelligent Manufactur-

ing (FAIM ’17). doi: 10.1016/j.promfg.2017.07.107.

[20] Edson de Araújo Silva, Eduardo Valentin, Jose Reginaldo Hughes Carvalho,

and Raimundo da Silva Barreto. 2021. A survey of Model Driven Engineering

in robotics. Journal of Computer Languages, 62, 101021. doi: 10.1016/j.cola.2020.
101021.

[21] D. Doval, S. Mancoridis, and B.S. Mitchell. 1999. Automatic clustering of soft-

ware systems using a genetic algorithm. In International Workshop on Software
Technology and Engineering Practice (STEP ’99). IEEE, 73–81. doi: 10.1109/STEP.
1999.798481.

[22] Joshua Garcia, Daniel Popescu, Chris Mattmann, Nenad Medvidovic, and Yuan-

fang Cai. 2011. Enhancing architectural recovery using concerns. In Interna-
tional Conference on Automated Software Engineering (ASE ’11). IEEE, 552–555.
doi: 10.1109/ASE.2011.6100123.

[23] XiaochengGe, Richard F. Paige, and JohnA.McDermid. 2010. Analysing System

Failure Behaviours with PRISM. In International Conference on Secure Software
Integration and Reliability Improvement Companion (SSIRI ’10), 130–136. doi:
10.1109/SSIRI-C.2010.32.

[24] Negar Ghorbani, Joshua Garcia, and Sam Malek. 2019. Detection and repair

of architectural inconsistencies in java. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), 560–571. doi: 10.1109/ICSE.2019.
00067.

[25] Brian Goldfain, Paul Drews, Changxi You, Matthew Barulic, Orlin Velev, Pana-

giotis Tsiotras, and James M Rehg. 2019. AutoRally: An Open Platform for

Aggressive Autonomous Driving. IEEE Control Systems Magazine, 39, 1, 26–55.
doi: 10.1109/MCS.2018.2876958.

[26] Adriano Gomes, Alexandre Mota, Augusto Sampaio, Felipe Ferri, and Julio

Buzzi. 2010. Systematic model-based safety assessment via probabilistic model

checking. In Leveraging Applications of Formal Methods, Verification, and Vali-
dation. Springer, 625–639.

[27] Raju Halder, José Proença, Nuno Macedo, and André Santos. 2017. Formal

Verification of ROS-Based Robotic Applications Using Timed-Automata. (2017).

doi: 10.1109/FormaliSE.2017.9.

[28] David R. Harris, Howard B. Reubenstein, and Alexander S. Yeh. 1995. Reverse

Engineering to the Architectural Level. In International Conference on Software
Engineering (ICSE ’95). IEEE, 186–186. doi: 10.1145/225014.225032.

[29] Wilhelm Hasselbring and André van Hoorn. 2020. Kieker: A monitoring frame-

work for software engineering research. Software Impacts, 5, 100019. doi: https:
//doi.org/10.1016/j.simpa.2020.100019.

[30] Abdelfetah Hentout, Mustapha Aouache, Abderraouf Maoudj, and Isma Akli.

2019. Human-robot interaction in industrial collaborative robotics: a literature

review of the decade 2008–2017. Advanced Robotics, 33, 15-16, 764–799. doi:
10.1080/01691864.2019.1636714.

[31] CasidheHutchison,Milda Zizyte, Patrick E. Lanigan, David Guttendorf, Michael

Wagner, Claire Le Goues, and Philip Koopman. 2018. Robustness Testing of Au-

tonomy Software. In International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP ’18). ACM, 276–285. doi: 10.1145/3183519.

3183534.

[32] Felix Ingrand. 2019. Recent Trends in Formal Validation and Verification of

Autonomous Robots Software. In International Conference on Robotic Computing
(IRC), 321–328. doi: 10.1109/IRC.2019.00059.

[33] Tauseef Israr, Murray Woodside, and Greg Franks. 2007. Interaction tree algo-

rithms to extract effective architecture and layered performance models from

traces. Journal of Systems and Software, 80, 4, 474–492. Software Performance.

doi: 10.1016/j.jss.2006.07.019.

[34] Chijung Jung, Ali Ahad, Jinho Jung, Sebastian Elbaum, and Yonghwi Kwon.

2021. Swarmbug: Debugging Configuration Bugs in Swarm Robotics. In Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’21). ACM, 868–880. doi: 10.

1145/3468264.3468601.

[35] Jin Hwa Jung and Dong-Geon Lim. 2020. Industrial robots, employment growth,

and labor cost: a simultaneous equation analysis. Technological Forecasting and
Social Change, 159, 120202. doi: 10.1016/j.techfore.2020.120202.

[36] Min Yang Jung, Anton Deguet, and Peter Kazanzides. 2010. A component-

based architecture for flexible integration of robotic systems. In International
Conference on Intelligent Robots and Systems (IROS ’10, 6107–6112. doi: 10.1109/
IROS.2010.5652394.

[37] Sayali Kate, Michael Chinn, Hongjun Choi, Xiangyu Zhang, and Sebastian

Elbaum. 2021. PHYSFRAME: Type Checking Physical Frames of Reference for

Robotic Systems. In Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’21).
ACM, 45–56. doi: 10.1145/3468264.3468608.

[38] Sayali Kate, John-Paul Ore, Xiangyu Zhang, Sebastian Elbaum, and Zhaogui

Xu. 2018. Phys: Probabilistic Physical Unit Assignment and Inconsistency

Detection. In Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE ’18). ACM,

563–573. doi: 10.1145/3236024.3236035.

[39] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya, Kazuya

Takeda, and Tsuyoshi Hamada. 2015. An Open Approach to Autonomous

Vehicles. IEEE Micro, 35, 6, 60–68. doi: 10.1109/MM.2015.133.

[40] Mourad Kmimech, Mohamed Tahar Bhiri, and Phillipe Aniorte. 2009. Checking

Component Assembly in Acme: An Approach Applied on UML 2.0 Components

https://doi.org/10.1109/ICST46399.2020.00020
https://doi.org/10.1016/j.jss.2016.08.039
https://doi.org/10.1007/978-3-540-24741-8_9
https://doi.org/10.1145/3542945
https://doi.org/10.3390/jsan10030048
https://doi.org/10.1007/11786160_10
https://doi.org/10.1016/j.jss.2008.03.066
https://digitalcommons.usu.edu/smallsat/2018/all2018/328/
https://doi.org/10.1093/comjnl/bxq024
https://doi.org/10.1109/IROS.2005.1545523
https://doi.org/10.1109/IROS.2005.1545523
https://doi.org/10.1109/TSE.2011.94
https://doi.org/10.1109/MRA.2015.2452201
https://doi.org/10.1109/MRA.2015.2452201
https://doi.org/10.1007/978-3-540-68951-5_8
https://doi.org/10.1145/3526071.3527521
https://doi.org/10.1109/CSMR.2008.4493304
https://doi.org/10.1109/ICSME.2019.00091
https://doi.org/10.1109/CSMR.2011.8
https://doi.org/10.1016/j.promfg.2017.07.107
https://doi.org/10.1016/j.cola.2020.101021
https://doi.org/10.1016/j.cola.2020.101021
https://doi.org/10.1109/STEP.1999.798481
https://doi.org/10.1109/STEP.1999.798481
https://doi.org/10.1109/ASE.2011.6100123
https://doi.org/10.1109/SSIRI-C.2010.32
https://doi.org/10.1109/ICSE.2019.00067
https://doi.org/10.1109/ICSE.2019.00067
https://doi.org/10.1109/MCS.2018.2876958
https://doi.org/10.1109/FormaliSE.2017.9
https://doi.org/10.1145/225014.225032
https://doi.org/https://doi.org/10.1016/j.simpa.2020.100019
https://doi.org/https://doi.org/10.1016/j.simpa.2020.100019
https://doi.org/10.1080/01691864.2019.1636714
https://doi.org/10.1145/3183519.3183534
https://doi.org/10.1145/3183519.3183534
https://doi.org/10.1109/IRC.2019.00059
https://doi.org/10.1016/j.jss.2006.07.019
https://doi.org/10.1145/3468264.3468601
https://doi.org/10.1145/3468264.3468601
https://doi.org/10.1016/j.techfore.2020.120202
https://doi.org/10.1109/IROS.2010.5652394
https://doi.org/10.1109/IROS.2010.5652394
https://doi.org/10.1145/3468264.3468608
https://doi.org/10.1145/3236024.3236035
https://doi.org/10.1109/MM.2015.133

ROSInfer: Statically Inferring Behavioral Component Models for ROS-based Robotics Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Model. In International Conference on Software Engineering Advances (ICSEA
’09), 494–499. doi: 10.1109/ICSEA.2009.78.

[41] Sophia Kolak, Afsoon Afzal, Claire Le Goues, Michael Hilton, and Christopher S

Timperley. 2020. It Takes a Village to Build a Robot: An Empirical Study of

The ROS Ecosystem. In International Conference on Software Maintenance and
Evolution (ICSME ’20). IEEE, 430–440. doi: 10.1109/ICSME46990.2020.00048.

[42] Philip Koopman and Michael Wagner. 2016. Challenges in autonomous vehicle

testing and validation. SAE International Journal of Transportation Safety, 4, 1,
15–24. http://www.jstor.org/stable/26167741.

[43] Sitar Kortik and Tejas Kumar Shastha. 2021. Formal verification of ros based

systems using a linear logic theorem prover. In International Conference on
Robotics and Automation (ICRA), 9368–9374. doi: 10.1109/ICRA48506.2021.
9561191.

[44] Heiko Koziolek. 2010. Performance evaluation of component-based software

systems: A survey. Performance Evaluation, 67, 8, 634–658. Special Issue on
Software and Performance. doi: 10.1016/j.peva.2009.07.007.

[45] James Kramer and Matthias Scheutz. 2007. Development environments for

autonomous mobile robots: A survey. Autonomous Robots, 22, 2, 101–132. doi:
10.1007/s10514-006-9013-8.

[46] Ivo Krka, Yuriy Brun, and Nenad Medvidovic. 2014. Automatic Mining of

Specifications from Invocation Traces and Method Invariants. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2014). ACM, 178–189. doi: 10.1145/2635868.2635890.

[47] Marta Kwiatkowska, Gethin Norman, and David Parker. 2009. PRISM: Proba-

bilistic Model Checking for Performance and Reliability Analysis. SIGMETRICS
Perform. Eval. Rev., 36, 4, (March 2009), 40–45. doi: 10.1145/1530873.1530882.

[48] Leslie Lamport. 2009. The PlusCal Algorithm Language. In Theoretical Aspects
of Computing. Springer, 36–60. doi: 10.1007/978-3-642-03466-4_2.

[49] Larry A. Layne. 2023. Robot-related fatalities at work in the United States,

1992–2017. American Journal of Industrial Medicine, 66, 6, 454–461. doi: https:
//doi.org/10.1002/ajim.23470.

[50] Caroline Lemieux, Dennis Park, and Ivan Beschastnikh. 2015. General LTL

Specification Mining (T). In International Conference on Automated Software
Engineering (ASE ’15), 81–92. doi: 10.1109/ASE.2015.71.

[51] Matt Luckcuck, Marie Farrell, Louise A. Dennis, Clare Dixon, and Michael

Fisher. 2019. Formal Specification and Verification of Autonomous Robotic

Systems: A Survey. ACM Comput. Surv., 52, 5, Article 100, (September 2019), 41

pages. doi: 10.1145/3342355.

[52] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William

Woodall. 2022. Robot Operating System 2: Design, Architecture, and Uses In

The Wild. Science Robotics, 7, 66, eabm6074. doi: 10.1126/scirobotics.abm6074.

[53] Spiros Mancoridis, Brian S. Mitchell, Yih-Farn R. Chen, and Emden R. Gansner.

1999. Bunch: a clustering tool for the recovery and maintenance of software

system structures. In International Conference on Software Maintenance (ICSM
’99). IEEE, 50–59. doi: 10.1109/ICSM.1999.792498.

[54] Xinjun Mao, Hao Huang, and Shuo Wang. 2020. Software Engineering for Au-

tonomous Robot: Challenges, Progresses and Opportunities. InAsia-Pacific Soft-
ware Engineering Conference (APSEC ’20), 100–108. doi: 10.1109/APSEC51365.
2020.00018.

[55] Onaiza Maqbool and Haroon Babri. 2007. Hierarchical Clustering for Software

Architecture Recovery. Transactions on Software Engineering (TSE), 33, 11, 759–
780. doi: 10.1109/TSE.2007.70732.

[56] Onaiza Maqbool and Haroon Babri. 2004. The weighted combined algorithm: a

linkage algorithm for software clustering. In European Conference on Software
Maintenance and Reengineering (CSMR ’04). IEEE, 15–24. doi: 10.1109/CSMR.

2004.1281402.

[57] A. Marburger and D. Herzberg. 2001. E-CARES research project: understand-

ing complex legacy telecommunication systems. In European Conference on
Software Maintenance and Reengineerin (CSMR ’01). IEEE, 139–147. doi: 10.
1109/CSMR.2001.914978.

[58] Johan Moe and David A. Carr. 2001. Understanding distributed systems via

execution trace data. In International Workshop on Program Comprehension
(IWPC ’01). IEEE, 60–67. doi: 10.1109/WPC.2001.921714.

[59] Chris Newcombe. 2014. Why Amazon Chose TLA+. In Abstract State Machines,
Alloy, B, TLA, VDM, and Z. Springer, 25–39. doi: 10.1007/978-3-662-43652-3_3.

[60] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and

Michael Deardeuff. 2015. How Amazon Web Services Uses Formal Methods.

Commun. ACM, 58, 4, (March 2015), 66–73. doi: 10.1145/2699417.

[61] Tony Ohmann, Michael Herzberg, Sebastian Fiss, Armand Halbert, Marc Pal-

yart, Ivan Beschastnikh, and Yuriy Brun. 2014. Behavioral Resource-Aware

Model Inference. In International Conference on Automated Software Engineering
(ASE ’14). ACM, 19–30. doi: 10.1145/2642937.2642988.

[62] John-Paul Ore, Carrick Detweiler, and Sebastian Elbaum. 2017. Lightweight

Detection of Physical Unit Inconsistencies without Program Annotations. In

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’17).
ACM, 341–351. doi: 10.1145/3092703.3092722.

[63] Samuel Parra, Sven Schneider, and Nico Hochgeschwender. 2021. Specifying

QoS Requirements and Capabilities for Component-Based Robot Software. In

2021 IEEE/ACM 3rd International Workshop on Robotics Software Engineering
(RoSE’21), 29–36. doi: 10.1109/RoSE52553.2021.00012.

[64] Sukesh Patel, William Chu, and Rich Baxter. 1992. A Measure for Composite

Module Cohesion. In International Conference on Software Engineering (ICSE
’92). ACM, 38–48. doi: 10.1145/143062.143086.

[65] Jason Porter, Daniel A. Menascé, and Hassan Gomaa. 2021. A decentralized

approach for discovering runtime software architectural models of distributed

software systems. Information and Software Technology, 131, 106476. doi: 0.
1016/j.infsof.2020.106476.

[66] Morgan Quigley. 2009. ROS: an open-source Robot Operating System. In In-
ternational Conference on Robotics and Automation Workshop on Open Source
Software. http://lars.mec.ua.pt/public/LAR%20Projects/BinPicking/2016_

RodrigoSalgueiro/LIB/ROS/icraoss09-ROS.pdf.

[67] André Santos, Alcino Cunha, and Nuno Macedo. 2019. Static-Time Extraction

and Analysis of the ROS Computation Graph. In International Conference on
Robotic Computing (IRC ’19). IEEE, 62–69. doi: 10.1109/IRC.2019.00018.

[68] André Santos, Alcino Cunha, Nuno Macedo, Rafael Arrais, and Filipe Neves

dos Santos. 2017. Mining the usage patterns of ROS primitives. In International
Conference on Intelligent Robots and Systems (IROS ’17). IEEE, 3855–3860. doi:
10.1109/IROS.2017.8206237.

[69] André Santos, Alcino Cunha, Nuno Macedo, and Cláudio Lourenço. 2016. A

framework for quality assessment of ros repositories. In International Con-
ference on Intelligent Robots and Systems (IROS ’16). IEEE, 4491–4496. doi:
10.1109/IROS.2016.7759661.

[70] Bradley Schmerl, Jonathan Aldrich, David Garlan, Rick Kazman, and Hong

Yan. 2006. Discovering Architectures from Running Systems. Transactions on
Software Engineering (TSE), 32, 7, (July 2006). doi: 10.1109/TSE.2006.66.

[71] Robert W. Schwanke. 1991. An Intelligent Tool for Re-Engineering Software

Modularity. In International Conference on Software Engineering (ICSE ’91). IEEE,
83–92. doi: 10.1109/ICSE.1991.130626.

[72] Diksha Singh, Esha Trivedi, Yukti Sharma, and Vandana Niranjan. 2018. Turtle-

Bot: Design and Hardware Component Selection. In International Conference
on Computing, Power and Communication Technologies (GUCON ’18), 805–809.
doi: 10.1109/GUCON.2018.8675050.

[73] Zipani Tom Sinkala and Sebastian Herold. 2021. InMap: Automated Interactive

Code-to-Architecture Mapping Recommendations. In International Conference
on Software Architecture (ICSA ’21). IEEE, 173–183. doi: 10.1109/ICSA51549.
2021.00024.

[74] Bridget Spitznagel and David Garlan. 1998. Architecture-Based Performance

Analysis. In Conference on Software Engineering and Knowledge Engineering
(SEKE ’98). (June 1998). http://www.cs.cmu.edu/afs/cs/project/able/ftp/

perform-seke98/perform-seke98.pdf.

[75] Christopher Timperley and A Wąsowski. 2019. 188 ROS bugs later: Where do

we go from here? ROSCON’19. doi: 10.36288/ROSCon2019-900898.
[76] Christopher S. Timperley, Dürschmid, Tobias, Bradley Schmerl, David Garlan,

and Claire Le Goues. 2022. ROSDiscover: Statically Detecting Run-Time Archi-

tecture Misconfigurations in Robotics Systems. In IEEE International Conference
on Software Architecture (ICSA ’22). IEEE, 112–123. doi: 10.1109/ICSA53651.
2022.00019.

[77] André van Hoorn, JanWaller, andWilhelm Hasselbring. 2012. Kieker: A Frame-

work for Application Performance Monitoring and Dynamic Software Analysis.

In International Conference on Performance Engineering (CPE ’12) (ICPE ’12).

ACM, 247–248. doi: 10.1145/2188286.2188326.

[78] Milos Vasic and Aude Billard. 2013. Safety Issues in Human-Robot Interactions.

In International Conference on Robotics and Automation (ICRA ’13). IEEE, 197–
204. doi: 10.1109/ICRA.2013.6630576.

[79] Valeria Villani, Fabio Pini, Francesco Leali, and Cristian Secchi. 2018. Survey on

Human-Robot Collaboration in Industrial Settings: Safety, Intuitive Interfaces

and Applications. Mechatronics, 55, 248–266. doi: 10.1016/j.mechatronics.2018.

02.009.

[80] Markus Weißmann, Stefan Bedenk, Christian Buckl, and Alois Knoll. 2011.

Model Checking Industrial Robot Systems. InModel Checking Software. Springer,
161–176. doi: 10.1007/978-3-642-22306-8_11.

[81] MeloneeWise, Michael Ferguson, Derek King, Eric Diehr, and David Dymesich.

2016. Fetch & Freight: Standard Platforms for Service Robot Applications. In

Workshop on autonomous mobile service robots. http : / / docs . fetch3staging .
wpengine.com/FetchAndFreight2016.pdf.

[82] Thomas Witte and Matthias Tichy. 2018. Checking Consistency of Robot Soft-

ware Architectures in ROS. In International Workshop on Robotics Software En-
gineering (RoSE ’18). IEEE, 1–8. https://ieeexplore.ieee.org/document/8445812.

[83] Kangfeng Ye, Ana Cavalcanti, Simon Foster, Alvaro Miyazawa, and Jim Wood-

cock. 2022. Probabilisticmodelling and verification using RoboChart and PRISM.

Software and SystemsModeling, 21, 2, (April 2022), 667–716. doi: 10.1007/s10270-
021-00916-8.

https://doi.org/10.1109/ICSEA.2009.78
https://doi.org/10.1109/ICSME46990.2020.00048
http://www.jstor.org/stable/26167741
https://doi.org/10.1109/ICRA48506.2021.9561191
https://doi.org/10.1109/ICRA48506.2021.9561191
https://doi.org/10.1016/j.peva.2009.07.007
https://doi.org/10.1007/s10514-006-9013-8
https://doi.org/10.1145/2635868.2635890
https://doi.org/10.1145/1530873.1530882
https://doi.org/10.1007/978-3-642-03466-4_2
https://doi.org/https://doi.org/10.1002/ajim.23470
https://doi.org/https://doi.org/10.1002/ajim.23470
https://doi.org/10.1109/ASE.2015.71
https://doi.org/10.1145/3342355
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1109/ICSM.1999.792498
https://doi.org/10.1109/APSEC51365.2020.00018
https://doi.org/10.1109/APSEC51365.2020.00018
https://doi.org/10.1109/TSE.2007.70732
https://doi.org/10.1109/CSMR.2004.1281402
https://doi.org/10.1109/CSMR.2004.1281402
https://doi.org/10.1109/CSMR.2001.914978
https://doi.org/10.1109/CSMR.2001.914978
https://doi.org/10.1109/WPC.2001.921714
https://doi.org/10.1007/978-3-662-43652-3_3
https://doi.org/10.1145/2699417
https://doi.org/10.1145/2642937.2642988
https://doi.org/10.1145/3092703.3092722
https://doi.org/10.1109/RoSE52553.2021.00012
https://doi.org/10.1145/143062.143086
https://doi.org/0.1016/j.infsof.2020.106476
https://doi.org/0.1016/j.infsof.2020.106476
http://lars.mec.ua.pt/public/LAR%20Projects/BinPicking/2016_RodrigoSalgueiro/LIB/ROS/icraoss09-ROS.pdf
http://lars.mec.ua.pt/public/LAR%20Projects/BinPicking/2016_RodrigoSalgueiro/LIB/ROS/icraoss09-ROS.pdf
https://doi.org/10.1109/IRC.2019.00018
https://doi.org/10.1109/IROS.2017.8206237
https://doi.org/10.1109/IROS.2016.7759661
https://doi.org/10.1109/TSE.2006.66
https://doi.org/10.1109/ICSE.1991.130626
https://doi.org/10.1109/GUCON.2018.8675050
https://doi.org/10.1109/ICSA51549.2021.00024
https://doi.org/10.1109/ICSA51549.2021.00024
http://www.cs.cmu.edu/afs/cs/project/able/ftp/perform-seke98/perform-seke98.pdf
http://www.cs.cmu.edu/afs/cs/project/able/ftp/perform-seke98/perform-seke98.pdf
https://doi.org/10.36288/ROSCon2019-900898
https://doi.org/10.1109/ICSA53651.2022.00019
https://doi.org/10.1109/ICSA53651.2022.00019
https://doi.org/10.1145/2188286.2188326
https://doi.org/10.1109/ICRA.2013.6630576
https://doi.org/10.1016/j.mechatronics.2018.02.009
https://doi.org/10.1016/j.mechatronics.2018.02.009
https://doi.org/10.1007/978-3-642-22306-8_11
http://docs.fetch3staging.wpengine.com/FetchAndFreight2016.pdf
http://docs.fetch3staging.wpengine.com/FetchAndFreight2016.pdf
https://ieeexplore.ieee.org/document/8445812
https://doi.org/10.1007/s10270-021-00916-8
https://doi.org/10.1007/s10270-021-00916-8

	Abstract
	1 Introduction
	2 Architecturally-Relevant Component Behavior in ROS
	2.1 The Robot Operating System (ROS)
	2.2 Formalization of Architecturally-Relevant Component Behavior
	2.3 Behavioral Architecture Composition Bugs

	3 Approach
	3.1 API Call Detection
	3.2 Behavioral Pattern Detection
	3.3 State Variable Detection
	3.4 Transition Inference
	3.5 Initial Value Inference
	3.6 Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Measuring Recovery Rate (RQ1)
	4.3 Measuring Recall (RQ2)
	4.4 Measuring Precision (RQ3)
	4.5 Measuring Execution Time

	5 Discussion
	5.1 Lessons Learned about ROS Components
	5.2 Incomplete Models
	5.3 Real-World Bugs Found
	5.4 Coding Style Guidelines

	6 Related Work
	6.1 Analysis of Robot Systems
	6.2 Inference of Structural Architectures
	6.3 Dynamic Inference of Behaviors

	7 Conclusions
	8 Future Work
	Acknowledgments

