
Automated Program Repair, What Is It Good For?
Not Absolutely Nothing!

Hadeel Eladawy
University of Massachusetts

Amherst, MA, USA
heladawy@umass.edu

Claire Le Goues
Carnegie Mellon University

Pittsburgh, PA, USA
clegoues@cs.cmu.edu

Yuriy Brun
University of Massachusetts

Amherst, MA, USA
brun@cs.umass.edu

ABSTRACT
Industrial deployments of automated program repair (APR), e.g., at
Facebook and Bloomberg, signal a new milestone for this exciting
and potentially impactful technology. In these deployments, devel-
opers use APR-generated patch suggestions as part of a human-
driven debugging process. Unfortunately, little is known about
how using patch suggestions affects developers during debugging.
This paper conducts a controlled user study with 40 developers
with a median of 6 years of experience. The developers engage in
debugging tasks on nine naturally-occurring defects in real-world,
open-source, Java projects, using Recoder, SimFix, and TBar, three
state-of-the-art APR tools. For each debugging task, the developers
either have access to the project’s tests, or, also, to code suggestions
that make all the tests pass. These suggestions are either developer-
written or APR-generated, which can be correct or deceptive. De-
ceptive suggestions, which are a common APR occurrence, make
all the available tests pass but fail to generalize to the intended
specification. Through a total of 160 debugging sessions, we find
that access to a code suggestion significantly increases the odds
of submitting a patch. Access to correct APR suggestions increase
the odds of debugging success by 14,000% as compared to having
access only to tests, but access to deceptive suggestions decrease
the odds of success by 65%. Correct suggestions also speed up de-
bugging. Surprisingly, we observe no significant difference in how
novice and experienced developers are affected by APR, suggesting
that APR may find uses across the experience spectrum. Overall,
developers come away with a strong positive impression of APR,
suggesting promise for APR-mediated, human-driven debugging,
despite existing challenges in APR-generated repair quality.

KEYWORDS
automated program repair, debugging, human factors, user study

ACM Reference Format:
Hadeel Eladawy, Claire Le Goues, and Yuriy Brun. 2024. Automated Pro-
gram Repair, What Is It Good For? Not Absolutely Nothing!. In 2024
IEEE/ACM 46th International Conference on Software Engineering (ICSE ’24),
April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3597503.3639095

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04
https://doi.org/10.1145/3597503.3639095

1 INTRODUCTION
In 2020, operational software failures cost the U.S. economy $1.56
trillion [34]. Software debugging, testing, and verification costs
account for more than $100 billion annually, between half and three
quarters of the total software development budgets, taking up be-
tween a third and half of software engineers’ time [60]. Automated
program repair (APR) can potentially significantly improve this
situation by automatically producing patches for defects identified
either via bug reports or failing tests, or both [38].

APR, by many measures, has been highly impactful. Hundreds of
research papers have been written on the topic [17, 49, 50, 63] and
it has been deployed successfully in industry, including at Facebook
and Bloomberg [3, 31, 44, 58]. However, APR is far from omnipo-
tent. Studies have outlined numerous shortcomings that prevent
wider adoption. First, test-based APR cannot even be applied to 90%
of industrial defects because the necessary bug-evidencing tests
do not exist prior to a human fixing the defect [58]. Second, APR
can produce patches that break untested or undertested functional-
ity [54, 65, 69]. By some measures, fewer than 5% of the defects are
actually patched correctly, when published APR tools are applied
to datasets other than the ones in their original evaluations [9, 51].
Third, only 7.7% of industrial defects’ human-written patches are
sufficiently localized to be considered the target of most state-of-
the-art APR tools [58].

As a result, at Facebook, APR is a part of what is ultimately,
a human-driven debugging process. Developers act as oracles of
patch appropriateness for both internally deployed Getafix [3] and
SapFix [44] APR tools. However, for some categories of bugs, only
12% of the patches Getafix produces are the same as the patches
written by humans (although that rate goes up to 91% for some
other categories) [3]. Further, developers judged that only 48% of
the SapFix-produced patches correctly repaired the defects, and they
still manually modified half of those correct patches [44]. Overall,
while these tools can speed up the process of getting patches into
production, it is not clear if that effect is simply a result of the tools
bringing these particular defects to the developers’ attention. On
the bright side, developers are quite receptive to using APR: both
Getafix and SapFix were positively received at Facebook [3, 44], and
a large-scale survey of professionals suggests that developers are
open-minded to working with APR tools even if they often produce
low-quality suggestions [59].

These observations raise a central question at the heart of un-
derstanding the value of APR:

Does the availability of automatically produced patches
help developers debug?

1017

2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE)

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Hadeel Eladawy, Claire Le Goues, and Yuriy Brun

The answer to this question is far from obvious. As an analogy,
consider the case of automated fault localization, a.k.a. automated
debugging, which for more than 40 years has tackled the problem of
automatically determining which source code lines are responsible
for a defect [27, 82, 83]. Thirty years into that effort, controlled user
studies showed that, in fact, being told the results of state-of-the-art
fault localization techniques does not help non-expert developers fix
defects faster [61] and can even weaken programmers’ abilities in
fault detection [88].1 However, in industrial settings and for expert
developers, automated debugging can accelerate fixing defects [61,
87]. The questionwithAPR is similar. Intuition suggests that having
access to potential patches should speed up debugging. But it is also
possible that access to ready-made patches may reduce developer
understanding of the defect, and that even just the possibility that
the patch might be incorrect may derail and delay the manual repair
process. Further, incorrect patches might increase the chance that
developers deploy lower quality solutions than if they had no APR
help at all. Overall, access to APR patches could help developers,
but it could instead reduce their confidence in the solution or reduce
the quality of the solution and of the codebase more generally.

We designed and executed a user study with 40 graduate and
senior undergraduate college student developers, each performing
four debugging tasks on real-world defects from real-world open-
source systems. At the start of each task, the developer was either
shown no suggestion for how to fix the defect, or given access
to one of three types of suggestions: a correct developer-written
suggestion, a correct APR-generated suggestion, or a deceptive APR-
generated suggestion that passed all the developer-written tests in
the project but failed to fully repair the underlying defect (and so
would fail some other tests). The developers did not know where
the suggestion came from, if it was human-written or computer-
generated, and if it was correct. All suggestions passed all the
developer-written tests, as that is the goal of APR. We generated
the suggestions using three state-of-the-art APR tools that represent
three most popular APR approaches: TBar [39], SimFix [25], and
Recoder [98]. We thenmeasured whether the patch each participant
submitted, if any, was correct, incorrect, or plausible (passed the
project’s tests but failed to generalize to the intended behavior) and
the time the debugging task took.2

Our study answers five research questions:
RQ1: How do code suggestions affect debugging success?

Answer: Access to a code suggestion makes participants
much more likely to submit a patch. A correct suggestion
helps successfully repair defects (93.3% of participants did
so). Access to a deceptive suggestion hurts that ability (67.5%
of participants submitted overfitting patches in these situa-
tions).

RQ2: How does APR affect debugging success?
Answer: Access to a correct APR suggestion increases par-
ticipant debugging success by 14,000%, compared to having
access to only tests. Meanwhile access to a deceptive APR

1While this conclusion is counterintuitive, its possible explanations include that fault
localization tools “ignore [and fail to support] the fact that understanding the root
cause of a failure typically involves complex activities, such as navigating program
dependencies and rerunning the program with different inputs” [61] and “interference
between the mechanism of automated fault localization and the actual assistance
needed by programmers in debugging” [88].
2The experimental protocol was approved by the UMass Amherst IRB, protocol #4298.

suggestion decreases that success by 65%. Correct sugges-
tions are far more likely to help produce correct patches than
deceptive suggestions are to hinder producing them.

RQ3: How do code suggestions affect debugging time?
Answer: Access to correct suggestions speeds up debug-
ging, as compared to access to deceptive suggestions or no
suggestions at all.

RQ4: How can the effect of deceptive suggestions be mitigated?
Answer: Participants recognize that deceptive suggestions
are of lower quality than correct ones, but 67.5% of the partici-
pants still submit an overfitting patchwhen given a deceptive
suggestion. Surprisingly, we find no evidence that program-
ming experience improved the ability to recognize deceptive
suggestions, submit patches, submit correct patches, or de-
bug faster.

RQ5: How does APR use affect behavior?
Answer: Access to a correct suggestion helps participants
understand the defects. Participants overwhelmingly like
having access to suggestions and, on average, rate the likeli-
hood they would use APR in the future as 9 out of 10.

Our study focuses on whether APR helps developers debug. Un-
fortunately, APR research has rarely tackled this question. A 2023
study found that while many papers motivate APR research as
helpful to developers, fewer than 7% include an actual evaluation
with users, and some of those included in the 7% consist of a one-
participant user study, while many focused on using developers to
evaluate APR output, rather than how developers would be affected
by it [85]. The closest study [73] to ours was conducted a decade ago,
at the sunrise of APR research, and used patches produced by Gen-
Prog [37, 81] and Par [30], two of the earliest APR tools. That study
applied GenProg and Par to five defects and used 44 students, 28 en-
gineers, and 23 crowdsourced workers to evaluate whether access
to patches helped improve developer debugging. The study classi-
fied patches into low- and high-quality based on human judgement,
which conflated correctness, maintainability, and other factors [73].
By contrast, since then, more precise methodologies for evaluating
patch quality have emerged [35, 54, 65, 69], and hundreds of more
effective APR tools have been created [17, 49, 50, 63]. Our study
uses a representative set of three modern tools, and evaluates both
the APR code suggestions and the participant-written patches us-
ing the modern methodologies. Other studies have looked at how
developers deal with multiple code suggestions presented at once
and how they use suggestions [7], and have surveyed professionals
to understand what issues impact their trust in APR [59]. These
studies complement our work.

All questionnaires used in the study, data, and code to replicate
our analyses are available at: http://doi.org/10.17605/OSF.IO/9JZHR

The remainder of this paper is structured as follows. Section 2 de-
scribes APR background. Sections 3 and 4 detail our study method-
ology and results, respectively. Section 5 places our work in the
context of related research. Section 6 summarizes our contributions.

2 AUTOMATED PROGRAM REPAIR
APR tackles the problem of automatically producing a patch for a de-
fect, given some evidence of that defect. The most common form of
APR requires a set of program tests, some of which fail, evidencing

1018

Automated Program Repair, What Is It Good For? Not Absolutely Nothing! ICSE ’24, April 14–20, 2024, Lisbon, Portugal

the defect (although some techniques have used bug reports, or bug
reports and tests together [33, 53], or contracts [79]). The problem
APR solves is, fundamentally, searching through a space of possible
programs for one that satisfies some behavioral specification. The
two key observations that make APR possible are that (1) when hu-
mans repair defects, they tend to make a small number of changes,
so the search process can be confined to programs similar to the
buggy program, and (2) fault localization [27, 82, 83] can identify
the lines of code most likely responsible for the defect. These two
observations can significantly narrow the search space, leading
APR tools to sometimes produce patches [38]. APR approaches
typically use the program’s tests to validate the program variants
they produce. If a variant passes all tests, it is considered to patch
the defect. Hundreds of APR techniques have emerged over the last
decade and a half, described in several recent surveys [17, 49, 50, 63].
Section 5 discusses these techniques in more detail, including how
they produce variants.

While APR approaches only report patches if they pass all the
tests available during repair, because tests and specifications are
typically partial, the patches APR produces are not guaranteed to
be correct [54, 65, 69]. Patches that pass all tests are known as
plausible [65], whether they are correct or not. And patches that
pass all the tests but do not properly repair the defect are said to
overfit to the tests [54, 69]. Overfitting in APR has become “the
grand challenge in today’s research on APR” [38].

Our study uses three representative, state-of-the-art APR tools,
Recoder [98], SimFix [25], and TBar [39], as Section 3.3 will justify.

Terminology: In this paper, we use the term “suggestion” to
refer to the developer-written or APR-generated code participants
receive during debugging. Suggestions that properly implement
the intended behavior are “correct,” but those that pass all the
project’s tests while failing to generalize to the intended behavior
are “deceptive.” The participants produce “patches” as a result of
their debugging, which can be “correct,” “incorrect” if they fall at
least one of the project’s tests, or “overfitting” if they pass the tests
but fail to generalize to the intended behavior.

3 STUDY DESIGN
We performed a user study with 40 participants to measure the
effects code suggestions on debugging. This section describes our
study design and our data analysis methodology.

3.1 Research Questions
Our study aims to answer whether APR can help developers repair
defects. Of course, if APR patches were always correct, the answer
would be trivial, but a key challenge with APR is that it often pro-
duces incorrect patches [54],3 which is precisely why using APR
output as suggestions for a manual repair process is a promising ap-
proach — one industry undertakes today [3, 44]. However, because
APR sometimes produces deceptive suggestions, access to APR may
hurt or may help debugging, in the large. Accordingly, our user

3In fact, humans, when debugging, can, similarly to APR, produce patches that pass
tests but fail to generalize to the intended specification, as has been observed in prior
work [69, 95], and in the course of our study (Figure 2 will show that the partici-
pants submitted 11 overfitting patches even when they were not given a deceptive
suggestion.)

study aims to answer five research questions to shed light on to
how APR, and code suggestions in general, can affect debugging:

First,RQ1 asks how code suggestions (whether developer-written
or APR-generated) can affect debugging success. Next, we focus
on APR, with RQ2 asking how APR affects debugging success, as
part of an analysis of the potential impact of APR as part of a tool-
mediated but ultimately human-driven debugging process. Then,
we study debugging speed, with RQ3 asking how code suggestions
affect debugging time. Next, RQ4 investigates the possibility of mit-
igating the effect of deceptive suggestions. Finally, RQ5 explores
the qualitative side of how APR affects developer behavior, includ-
ing whether it causes developer to pretend to understand code they
do not understand, and whether the developers’ experience in our
study left a favorable impression of APR.

3.2 Participants
For our experiments, we had a total of 40 participants. All the
participants were either graduate or senior undergraduate students
in a Computer Science department. Of the participants, 25 self-
described as male and 15 as female. Due to a survey execution error,
we do not have age data for 13 of the 40 participants. For the data
properly collected, the participants age varied from 21 to 34, with a
median of 24.0 and standard deviation of 2.39. Their programming
experience varied from 1 to 41 years, wth a median of 6.0 and
standard deviation of 6.49. Experience with Java varied from 0 to 8
years, with a median of 1.75 years and standard deviation of 2.17
years. The participants were students in two software engineering
courses at a university. None had prior experience with APR.

3.3 APR tools
We selected three APR tools to satisfy the following criteria. Each
tool must represent state-of-the-art of modern APR, including in
terms of the quality of the code suggestions they produce. The
tools togethermust represent the three types of heuristic-based APR
tools, machine-learning-based, low-level-transformation-based, and
template-based (recall Section 2). Each tool must have been eval-
uated on the Defects4J dataset [28] (see Section 3.4) and the code
suggestions it produced for those defects, both correct and decep-
tive, must be publicly available.

Our criteria led to the following three APR tools. Recoder4 [98]
is a machine-learning tool that learns from a dataset of historical
bug fixes. Recoder uses neural machine translation to formulate the
APR problem as translating buggy code sequences into a correct
code sequences. SimFix [25] uses low-level code mutations and
transformations from existing patches to formulate a search space,
and then intersects that search space with code snippets similar to
the buggy code. Finally, TBar [39] uses a set of predefined repair
templates.

3.4 Defects
Our study had participants undertake debugging tasks consisting of
fixing a defect in a software system. We used theDefects4J dataset of

4While the Recoder evaluation [98] unfortunately did not make Recoder’s deceptive
suggestions available, the authors later identified that several of the generated code
suggestions the evaluation marked as correct were, in fact, deceptive: https://github.
com/pkuzqh/Recoder/blob/master/Result/out.

1019

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Hadeel Eladawy, Claire Le Goues, and Yuriy Brun

defectID description correct deceptive
Recoder SimFix TBar Recoder SimFix TBar

Chart 12 Misuse of a setter method. ✗ ✓ ✗ ✗ ✗ ✓

Lang 10 Unnecessary whitespace-handling code needs to be deleted. ✗ ✗ ✓ ✗ ✓ ✗

Lang 39 Missing nullness check results in a NullPointerException. ✗ ✓ ✗ ✗ ✗ ✓

Lang 51 Missing return in a switch statement. ✓ ✗ ✗ ✗ ✗ ✓

Math 33 Use of a wrong variable as an argument. ✓ ✓ ✗ ✗ ✗ ✓

Math 50 Unnecessary assignment code needs to be deleted. ✓– ✓ ✗ ✗ ✗ ✓

Math 63 Wrong comparison used for NaN values. ✗ ✓ ✗ ✗ ✗ ✓

Math 96 Wrong comparison used for complex numbers. ✓ ✗ ✗ ✗ ✗ ✓

Mockito 29 Missing nullness check results in a NullPointerException. ✓ ✗ ✗ ✗ ✗ ✓

Figure 1: Summary of the nine defects from the Defects4J benchmark used in our study. Note that while both Recoder (denoted
✓–) and SimFix produce (different) correct suggestions for Math 50, our study only uses the SimFix’ suggestion.

real-world defects from open-source software systems that occurred
during the natural development process [28]. Defects4J v1.2 consists
of 395 defects. Each defect contains the code, a set of tests at least
one of which fails because of the defect, and a minimized set of
changes made by the project’s developers that make all the tests
pass. Defects4J is a commonly used benchmark to evaluate APR.

Our criteria for selecting a subset of the defects for our study
included: (1) at least one of our three APR tools produced a correct
code suggestion to repair the defect, (2) at least one of our three
APR tools produced a deceptive code suggestion for the defect,
(3) the defect was not so trivial that it could be fixed in under
a minute without help, (4) the defect was not so complex that
it could not be fixed in 30 minutes, and (5) each of our study’s
three APR tools should contribute suggestions (whether correct
or deceptive) for a nontrivial portion of the defects. We judged
defect complexity manually. We excluded as too complex defects
that spanned multiple files, methods, or locations within a single
file. We manually judged whether the defect would take more than
a minute but could be fixed in less than 30 minutes by attempting
to repair the defect ourselves.

Starting with Defects4J’s 395 defects, we selected the defects
for which at least one of our APR tools generated at least one
code suggestion, resulting in 119 defects. We then filtered that
list to contain defects with one correct suggestion and at least one
deceptive suggestion, resulting in 15 defects. Next, we filtered
out those defects whose correct APR suggestions were different
from the developer suggestions, leaving 9 defects. However, we
encountered difficulty running one of those, Closure 115, onmodern
hardware, so we replaced it with an alternate, Math 33, whose
correct APR suggestion was identical to the developer suggestion.
We then verified that the selected 9 defects were neither trivial nor
too complex, and that each APR tool produced suggestions for a
nontrivial portion of the defects.

Figure 1 summarizes the nine defects used in our study, and
the three APR tools’ performance on these defects. Every defect
has at least one of our three APR tools generate a correct code
suggestion, and at least one generate a deceptive code suggestion.
We retrieved all of the code suggestions from the original tool’s re-
leased evaluation data packages [25, 39, 98]. The developer-written
code suggestions come from the Defects4J’s developer repairs.

For one defect, (Math 50), two tools generated two different
correct code suggestions; we selected one at random (the one we
did not select is denoted ✓–) in Figure 1). Our goal was to ensure
that every selected defect had at least one correct and at least one
deceptive code suggestion generated by an APR tool, and not to
ensure a balanced distribution of the three tools across the two
kinds of suggestions. (To do so would have been too restrictive for
this dataset.)

3.5 Debugging Tasks
At the start of the study, the participant was asked to fill out a con-
sent form explaining the risks and benefits of the study and giving
them the option to opt out of having their data be used by the re-
searchers. Then, the study administrator introduced the participant
to the environment, and instructed them perform four debugging
tasks, sequentially. Each debugging task lasted 30 minutes, though
the participant could end it earlier. While we asked participants
to stop at 30 minutes, some worked a little longer before stopping.
We further allowed participants who had left over time from some
tasks to return to earlier, unfinished tasks. The participants used
Eclipse for their debugging tasks. When the participant started,
an Eclipse workspace had already been prepared, containing four
projects for four randomly selected defects from our nine study
defects. Within the Eclipse projects, the participant had access to
all of the project’s unit tests and source code (though the failing
unit tests quickly led the participants to the relevant method.) The
administrator told the participants that “The defect is in the code,
so you may change any of the source code files, but you can assume
the tests are correct.” Participants were allowed to use the Internet.
We blocked access to certain pages that display Defects4J defects
and the developer-written patches [71].

The study administrator provided a handout with a brief descrip-
tion of the projects, and screenshots that showed how to run and
explore tests, and the difference between a failure and an error
in the JUnit window in Eclipse. The study administrator walked
through the handout with each participant.

Each participant was asked to fix the given defect within 30
minutes, though as described above, some took longer. At the end
of each debugging task, we asked the participant to fill out an online
survey. We considered the time between when the participant first

1020

Automated Program Repair, What Is It Good For? Not Absolutely Nothing! ICSE ’24, April 14–20, 2024, Lisbon, Portugal

expanded the project until starting the survey as the debugging
time for that task. The survey asked for responses to four prompts:
“Explain briefly the cause of the bug you just worked on. If you
could not identify the cause, say that.”, “Explain briefly how you
repaired the bug. If you could not repair it, say that.”, “If you were
given a suggested patch when you started debugging this bug,
describe whether this patch was helpful or not helpful in your
debugging.”, and “If you were given a suggested patch when you
started debugging this bug, how would you describe the patch’s
quality on a scale of 0 to 10?”

Each of the four tasks was part of one of four treatments. In the
“no suggestion” treatment, the participant received no additional
information. In the other three treatments, the participant received
a code suggestion. The participants were told that “the code sug-
gestion may or may not help you fix the defect. You are free to
use these suggestions however you wish.” They were also told
that “a correct fix will make all tests pass. But passing all the tests
does not necessarily mean that the bug is fixed.” In the “developer
suggestion” treatment, the suggestion was the projects’ minimized,
developer-written defect repair. In the “APR correct suggestion”
treatment, the suggestion was generated by one of our APR tools
and correctly repaired the defect. Finally, in the “APR deceptive
suggestion” treatment, the suggestion was generated by one of our
APR tools but did not correctly repair the defect, though passed all
of the projects’ tests. (For brevity, we omit “suggestion” from the
treatment names.)

The participants were not told what kind of code suggestions
they received, nor whether it was correct. They could apply it and
run the projects tests, though all suggestions made all the tests pass,
by design.

After finishing the four debugging task sessions, each participant
was asked to fill out an exit survey, which asked for demographic
information, experience in programming, Java, and experience
using Eclipse and JUnit. Finally, they were asked three multiple
choice questions: “On a scale of 0 to 10, overall, what did you think
of the quality of the suggested patches you were given, across all
defects?”, “How would you describe your overall experience using
the suggested patches when debugging?”, and “If you had access
to a tool that automatically generated suggested patches like these
for you, how likely are you to use such a tool in your everyday
programming tasks, on a scale of 0 to 10?”

Prior to the study, we ran a small-scale pilot with two subjects
to ensure the study ran smoothly and the instructions were clear.
These extra subjects’ data are not included in this paper.

For each participant, we randomized the choice of the four of
the nine defects, the treatment used for each defect, and the order
in which the participant saw the defects (and, thus, the treatments).

3.6 Data Collection
All the experiments were screen-recorded (with consent of the
participants), and we used the recordings to conduct measurements
for the study, such as the time to completion of each task. The final
Eclipse workspaces for the debugging tasks were also saved, and
we used the final patches participants produced to measure patch
quality and correctness.

Overall, our 40 participants performed 4 tasks, each, for a total of
160 debugging tasks completed. However, due to a property of the
code suggestions, our results contain data for 169 debugging task
measurements. All the correct suggestions generated by the three
tools for our nine defects were different from the developer-written
suggestions except for Math 33. Accordingly, the data for the four
participants in the “APR correct” treatment and the five participants
in the “developer” treatment for Math 33 were treated as both “APR
correct” and “developer” treatments. Thus, in the data, it appears as
if these nine participants worked on five tasks, each. This results in
data for 45 “developer” and 44 “APR correct” treatment instances,
instead of the expected 40, and a total of 169 tasks.

Out of 169 attempts, our study generated 150 total participant-
written patches; 19 attempts resulted in participants generating no
patch. We evaluated the patches written by the participants fol-
lowing the state-of-the-art patch evaluation methodology [54] that
combines manual inspection (which has been empirically shown to
be subjective and biased [35]) and objective independent-test-suite-
based assessment (which, on its own, can be incomplete [35]). We
first manually compared and marked as “correct” the participants’
patches that were identical to the developers’ suggested repairs or
the APR-generated correct suggestions. We next manually com-
pared and marked as “overfitting” the participants’ patches that
were identical to the APR-generated deceptive suggestions. We
then ran the developer tests included in the project on the remaining
participant patches and marked as “incorrect” those that failed at
least one test. For the remaining patches (which passed all the tests
included in their projects) we used independently generated, high-
coverage test suits to check if the participants’ patches failed any of
these tests, marking those that failed at least one test as “overfitting”.
For seven of the nine defects, we used the test suites generated by
prior work [54]. Two defects, Math 96 and Mockito 29, did not
have previously generated tests (because they were not repaired by
APR tools prior to the state-of-the-art ones we use in our paper),
and we followed the prior work’s methodology [54] to generate
the test suites. The fraction of passing, independent tests denoted
the quality of the participants’ patches. Finally, we manually ex-
amined the remaining six participant patches and reasoned about
their correctness, attempting to generate behavior not covered by
the independent test suites that might differ from the developer-
written correct repair suggestion, and making an ultimate decision
on patch correctness as “correct” or “overfitting”. (Figure 2, which
Section 4.1 will describe, reports our patch classification results.)

3.7 Analysis methodology
RQ1–RQ4 evaluate quantifiable measurements surrounding partic-
ipant performance on debugging tasks under the four treatment
conditions. We measure the following four response variables re-
lated to participants’ debugging success:

• Completion: (binary variable) Whether the participant sub-
mitted a patch.

• Correctness: (categorical variable) As described in Sec-
tion 3.6, we classified each participant’s patch as “correct,”
“overfitting,” or “incorrect.” As a reminder, overfitting patches
pass all of its project’s developer-written tests, but nonethe-
less exhibit incorrect behavior.

1021

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Hadeel Eladawy, Claire Le Goues, and Yuriy Brun

Participant Patch
Correct Overfitting Incorrect None

Su
gg

es
ti
on no suggestion 15 6 4 15

deceptive APR 8 27 2 3
correct APR 44 0 1 0
developer 39 4 0 1

Figure 2: Counts and types of the participant-written patches,
by suggestion type.

• Debugging time: (continuous variable) The amount of time
that elapsed from the moment the participant expanded the
project for a debugging task and the moment they started
filling out the post-task survey form for that task.

We additionally examined the quantitative and open-ended sur-
vey responses to identify interesting trends in the participants’
behavior, which we examine in RQ5. For example, the partici-
pants’ explanations of the cause of the defect revealed insights into
whether they understood the debugging task, and their rating of
the likelihood that they would use an automated tool that generates
coding suggestions in the future represented an overall measure of
the quality of their debugging experience using APR.

In general, we aim to compare the distribution of dependent
variables across the four treatment conditions. Our study design
imposes constraints on these analyses. We must control both for
the participants, as their debugging and programming skills will
vary, and the debugging task difficulty, as some of the defects are
likely to be more difficult to repair than others. There are multiple
observations per participant, and the observations are thus not
independent, and there may be learning effects. We therefore use
mixed-effect multivariate regression models for our analyses and
treat the participants and debugging tasks as random effects. We
account for learning effects by including, along with the treatment,
the number of patch attempts so far (0–3), and the interaction
between number of attempts so far and treatment, as independent
variables. We discuss other analyses particular to specific research
questions in context.

4 STUDY RESULTS
We now analyze our study results to answer our five research
questions.

4.1 RQ1: How Do Code Suggestions Affect
Debugging Success?

Our first question focused on whether seeing code suggestions,
developer-written or APR-generated, affected participants’ success
in their debugging tasks. Recall that each participant performed
four tasks, one per treatment, in a randomized order. Thus, we first
checked if the task order affected participants’ success. A mixed-
effects multivariate logistic regression model including order as a
predictor (recall Section 3.7) showed that neither it nor its interac-
tion with treatment contributed in a statistically significant way to
predicting whether a participant correctly patched a defect. This
suggests that subjects did not necessarily get better at fixing bugs

Participant Patch
Correct Overfitting

Coeff. p-value Coeff. p-value

correct APR 4.9839 < 0.0001 -19.22 0.997
developer 2.7721 0.0002 -0.3724 0.595
deceptive APR -1.0226 0.0602 2.82 < 0.0001
intercept -0.5659 0.243 -1.9661 < 0.0001

𝜒2 27.519 < 0.0001 36.506 < 0.0001

fit 𝑅2𝑚 𝑅2𝑐 𝑅2𝑚 𝑅2𝑐
0.559 0.682 0.953 0.961

Figure 3: Mixed-effect multivariate logistic regression model
parameters for predicting the participant submitting a cor-
rect patch (left) and an overfitting patch (right). For correct
patches, the positive coefficients are statistically significant
for correct APR and developer treatments, at 𝛼 = 0.05. For
the deceptive APR treatment, the negative coefficient is only
weakly statistically significant, at 𝛼 = 0.1. For overfitting
patches, only the positive coefficient for the deceptive APR
treatment is statistically significant, at 𝛼 = 0.05.

with practice. We therefore follow standard practice and exclude
order from the final models we built for this research question.

Figure 2 summarizes the correctness of the participants’ patches
(our dependent variable) across treatments. First, there is a strong re-
lationship between the participants being provided any suggestion
and producing any patch: 𝜒2 = 32.841 with 𝑝 < 0.0001, allowing us
to reject the null hypothesis.

Finding: Participants who received a code suggestion for
fixing a defect were much more likely to submit a patch
than those who received no suggestion.

While producing a patch is a start, the more interesting question
is whether the patch is correct, and under what circumstances. The
left-hand side of Figure 3 describes the mixed-effect multivariate
logistic regressionmodel predicting the participant submitting a cor-
rect patch. Starting with a correct suggestion (either APR-generated
or developer-written) strongly correlates with submitting a correct
patch. We confirm the model fit in two ways. First, Wald 𝜒2 test
for the significance of the treatment to the model fit rejects the null
hypothesis with 𝑝 < 0.0001. Second, we compute the marginal (𝑅2𝑚)
and conditional (𝑅2𝑐) coefficients of determination for generalized
mixed-effect models, which describe the proportion of variance
explained by the fixed effects alone and the fixed and random ef-
fects together, respectively. Our model fits the data reasonably well
overall, with 𝑅2𝑐 = 68.2%, and the fixed effects alone (the type of
patch provided) accounts for a large proportion of that variance
(𝑅2𝑚 = 55.9%). Importantly, our data also suggest that developer-
written patches and correct APR patches are equivalent in this
setting: a post hoc ANOVA test (using Tukey’s HSD) comparing
the differences between treatment group means does not allow us
to reject the null hypothesis at 𝛼 = 0.05.

1022

Automated Program Repair, What Is It Good For? Not Absolutely Nothing! ICSE ’24, April 14–20, 2024, Lisbon, Portugal

-3.41

-2.45

-1.5

-0.54

0.42

1.38

2.33

3.29

4.25

5.21

6.16

o
v
e

rfi
tt

in
g

 p
a

tc
h

in
c
o

rr
e

c
t

p
a

tc
h

c
o

rr
e

c
t

p
a

tc
h

n
o

 p
a

tc
h

no suggestion

deceptive APR suggestion

correct APR suggestion

developer suggestion

Figure 4: Correlation between patch type and generated fix
type. The area of a circle shows the absolute value of the
corresponding correlation coefficient. Blue-colored circles
represent positive association (attraction). Red-colored cir-
cles represent negative association (repulsion).

Finding: 93.3% of participants who received correct sug-
gestions submitted correct patches. Receiving a correct
suggestion helps successfully repair defects. We find no ev-
idence that the source of the suggestion (APR or developer)
matters; however, we do not evaluate whether informing
participants of the source of the suggestion would have an
effect.

Meanwhile, receiving a deceptive suggestion negatively cor-
relates with submitting a correct patch (that relationship is only
weakly significant, 𝑝 = 0.0602) and strongly positively correlated
with submitting an overfitting patch (𝑝 < 0.0001), as the right-hand
side of Figure 3 shows. The 𝑅2𝑚 and 𝑅2𝑐 values suggest the model
fits the data extremely well 𝑅𝑚 = 95.3 and 𝑅2𝑐 = 96.1%, confirmed
with Type II Wald 𝜒2 tests, and virtually all of the model’s variance
explained by the fixed effects (that the provided suggestion was
deceptive).

Finding: 67.5% of participants who received a deceptive
suggestion submitted overfitting patches. Receiving a de-
ceptive suggestion hurts the ability to successfully repair
defects and increases the chances of submitting an overfit-
ting patch.

A more interpretable representation of these relationships uses
a 𝜒2 test of independence between the treatments, which allows a
visualization of the resulting residuals, shown in Figure 4. The area
of a circle is the absolute value of the corresponding correlation
coefficient. Positive residuals — a positive association between the
suggestion and the patch type — are shown in blue, while negative
residuals in red. The figure clearly visualizes our key observations:

Model 1, IV: Access to any APR

Treatment Coeff. p-value

any APR 0.9656 0.0146
intercept -0.5108 0.1178

𝜒2 5.9687 0.01456

fit 𝑅2𝑚 = 0.0585 𝑅2𝑐 = 0.0585

Model 2, IV: type of APR suggestion
Treatment Coeff. p-value

correct APR 4.9404 0.00018
deceptive APR -1.0423 0.081
intercept -0.5551 0.2573

𝜒2 16.898 0.00021

fit 𝑅2𝑚 = 0.6201 𝑅2𝑐 = 0.7128

Figure 5: Mixed-effect multivariate logistic regression pa-
rameters for two models, both predicting the participant
submitting a correct patch. The top model compares the
effect of any APR suggestion to having no suggestion, and
bottom model separates out the effects of correct and decep-
tive APR suggestions. Access to any APR suggestion and to
correct APR suggestions statistically significantly improves
the chance of submitting a correct patch, while deceptive
APR suggestions weakly statistically significantly decrease
that chance.

deceptive suggestions are strongly positively associated with pro-
ducing overfitting patches and correct patches, regardless of source,
are strongly positively associated with submitting correct patches.
Receiving no suggestion is strongly associated with submitting no
patch at all.

4.2 RQ2: How Does APR Affect Debugging
Success?

We next focus on whether having access to APR affected debugging
success, envisioning APR as part of a human-driven debugging
process. We explore whether an APR tool providing suggestions to
humans would be practically useful on balance, in light of the fact
that some of those suggestions will be deceptive. To understand
the implications of this real-world scenario, we build a mixed-effect
multivariate logistic regression to explicitly look at and compare
the effects of an APR suggestion (whether correct or deceptive)
to no suggestion at all. (Thus, we exclude the developer-written
suggestions from this model.)

Figure 5 describes two mixed-effect logistic multivariate regres-
sion models for predicting the participant submitting a correct patch
based on APR-provided suggestions. The top model compares ac-
cess to any APR suggestion to having no suggestion at all. The
relationship between being given any APR suggestion and produc-
ing a correct patch is positive and significant at 𝛼 = 0.05, but the
model does not fit the data very well (𝑅2𝑐 = 5.85%), which suggests
that our model accurately predicts patch correctness, on average,
but suffers from high variability. The bottom model separates the

1023

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Hadeel Eladawy, Claire Le Goues, and Yuriy Brun

10

20

30

40

50

no suggestion deceptive APR correct APR developer

suggestion type

d
e

b
u

g
g

in
g

 t
im

e
 i
n
 m

in
u

te
s

Figure 6: Debugging time (in minutes) distribution by treat-
ment.

effect of correct and deceptive APR suggestions and fits the data
much more effectively (𝑅2𝑐 = 71.3%, with much of the power coming
from the fixed effects). This model shows that deceptive sugges-
tions have a modest negative impact on a participant’s ability to
create a correct patch (weakly statistically significant, 𝑝 = 0.081),
while correct suggestions have a strong, statistically significant
positive impact. The two counteract in the top model.

The difference in the effects between correct suggestions and
deceptive suggestions is quite large. An estimated coefficient 𝛽 in a
logistic regression model is a log-odd, and can be interpreted as an
odds-ratio 𝑒𝛽 . This suggests that a participant receiving a correct
APR suggestion is approximately 𝑒4.94 = 140 times more likely to
submit a correct patch than a participant who receives no sugges-
tion. Receiving a deceptive suggestion reduces the probability of
producing a correct patch relative to receiving no suggestion by
1 − 𝑒−1.0423 = 65%.

Finding: Compared to having no help fromAPR, receiving
a correct APR suggestion increases participant debugging
success by 14,000%, while receiving a deceptive APR sug-
gestion decreases participant debugging success by 65%
and increases the chance of submitting an overfitting patch.
Correct suggestions are far more likely to help produce
correct patches than deceptive suggestions are to hinder
producing them, although the overall benefit of using APR
depends on the impact of correct and overfitting patches
and on the APR tool’s correct to deceptive suggestion ratio.

4.3 RQ3: How Do Code Suggestions Affect
Debugging Time?

Having understood the effect of code suggestions and APR on de-
bugging success, we now look at their effect on debugging time.
Figure 6 summarizes debugging time distributions across the treat-
ments. Themean debugging times for the “no suggestion” treatment
(1,492 seconds = 24.9 minutes) and “deceptive APR” treatment (1,409
seconds = 23.5 minutes) are higher than for the “developer” treat-
ment (994 seconds = 16.6 minutes) and the “correct APR” treatment

APR Correct Developer Deceptive

no suggestion 0.0097 < 0.001 0.9838
correct APR — 0.72617 0.1044
developer — — 0.0011

Figure 7: Results of Tukey’s HSD post hoc analysis to com-
pare means of debugging time between treatments; we omit
results for order because, while accounting for order is im-
portant in the way it affects the effect of other variables, our
focus in this question is how suggestions affect debugging
time. The table shows p-values corresponding to whether the
difference between the category in the row and the column is
statistically meaningful; we bold results that are significant
at 𝛼 = 0.05.

(1,178 seconds = 19.6 minutes). Combined, the mean debugging
time for both treatments use correct suggestions (“developer” and
“correct APR”) was 1,087 seconds = 18.1 minutes.

We follow a similar analysis approach to determine if these dif-
ferences are statistically meaningful as we do for patch correctness,
instead modeling time (a continuous variable). By contrast with
correctness, task order does have a statistically significant effect in a
model for task completion time, and so we include it in our analysis.
Although participants did not necessarily get better at debugging
defects correctly over time, they do appear to have gotten faster.

Both treatment and task order have a statistically significant
effect on the model (𝑝 < 0.0001 for treatment, 𝑝 = 0.0089 for
presentation order, for Type II Wald 𝜒2 tests). Because our concern
is whether the apparent differences in completion time in Figure 6
are meaningful, we omit the full model in the interest of brevity and
instead focus on the results of a post hoc analysis using Tukey’s
procedure to compare the means between treatment types.

Figure 7 shows the p-values corresponding to whether the differ-
ences in the means of the row and column category are meaningful
(with statistically significant differences in bold). We observe that:

• Both developer and correct APR suggestions improve debug-
ging time, compared to having no suggestion.

• Debugging time using deceptive suggestions is not signif-
icantly different from time required with no suggestion at
all.

• Debugging time when using developer suggestions is signif-
icantly slower than debugging time using deceptive sugges-
tions.

• There is not a significant difference between correct APR
and developer suggestions in terms of debugging time.

Finding: Developers with access to correct suggestions,
whether developer-written or APR-generated, tend to de-
bug faster than those with no suggestions or deceptive
suggestions.

1024

Automated Program Repair, What Is It Good For? Not Absolutely Nothing! ICSE ’24, April 14–20, 2024, Lisbon, Portugal

correct APR deceptive APR developer

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0

1

2

3

4

5

6

7

8

9

10

count

ra
ti
n

g

Figure 8: Distribution of the participants’ ratings of the qual-
ity of the code suggestions. Red lines indicate each group’s
mean values.

4.4 RQ4: How Can the Effect of Deceptive
Suggestions Be Mitigated?

A key to using APR effectively when debugging is being able to
tell whether the code suggestion is deceptive. After completing
tasks with deceptive suggestions, when responding to “Describe
whether this patch was helpful or not helpful in your debugging,”
example participant quotes include “The patch given is wrong” from
participant 15, “The patch resulted in all the test cases passing (I
think), but I don’t think it was a real solution (treating symptoms
rather than disease)” from participant 11, “It was helpful to remove
the error. But I have this suspicion that the patch was not correct”
from participant 16, “The patch was not helpful, I think it was
misleading” from participant 31, and “It helped me pass all test
cases. However, I am unsure whether or not this fixed the bug”
from participant 39. These quotes suggest some participants could
tell deceptive suggestions were deceptive. Thus, we further explore
whether participants can recognize deceptive suggestions.

Recall that after each debugging task, the participants were asked
to rate the task’s suggestion’s quality on a scale of 0 to 10. Figure 8
summarizes the distribution of those ratings. The mean quality
rating of the deceptive APR suggestions was 6.05 and of the correct
APR suggestions, 8.75. This difference is statistically significant,
𝑝 < 0.0001. For developer suggestions, the mean quality rating was
8.17, which is also statistically significantly different from that of
deceptive suggestions (𝑝 < 0.0001), but indistinguishable from the
correct APR suggestions.

Finding: Participants were often able to recognize that
deceptive suggestions were of lower quality than correct
suggestions, producing some hope that, with practice, de-
velopers can use APR more effectively to help debug. Still,
67.5% of the participants who received a deceptive sug-
gestion submitted an overfitting patch, suggesting that
recognizing low quality may not be enough to sufficiently
mitigate deceptive suggestion’s impact.

It is possible that more experienced developers are less suscep-
tible to deceptive APR suggestions. We evaluated whether self-
reported programming experience interacted with suggestion type
to predict debugging success in a mixed-effects linear model, as
well as whether self-reported experience correlated with a partici-
pant’s ratings differentiating between deceptive and correct APR
suggestions. We found no statistically significant relationships in
these models. We, therefore, find no quantitative evidence that ex-
perience improved identification of low-quality suggestions. This
suggests that novice developers may already be well equipped to
distinguish between high- and low-quality suggestions while de-
bugging. Further, we investigated whether experience predicted
submitting a patch, debugging success, or debugging speed, or in-
teracted with suggestion type for the models from RQ1, RQ2, and
RQ3, and also found no statistically significant relationships. Thus,
we found no evidence that experience mitigated the negative effects
of deceptive patches or contributed to more success in using APR.
This surprising observation is potentially encouraging as APR may
find uses for both experienced and inexperienced developers.

Finding: Surprisingly, we observe no quantitative evi-
dence that more experienced participants are better able
to differentiate high- and low-quality patches, and to
benefit differently from suggestions and APR, than less-
experienced participants. Thus, APR may be beneficial for
developers with a range of experience.

4.5 RQ5: How Does APR Use Affect Behavior?
One concern with using APR is that it could allow developers who
do not understand the code to get away with simply submitting
low-quality patches. Recall that in the after-task survey, we asked
developers to explain the underlying defect in each task. We exam-
ined these responses to identify cases in which the participants did
or did not understand the defect. For example, some responses only
stated the failing test outcome or symptom, or the function the test
called, with no further explanation, e.g., participant 2 explained the
defect as “It was due to a null pointer exception.” and participant 38
said “The bug is caused by flaws in the compareTo function.” These
explanations provide only symptom- or surface-level features of
the bug rather than demonstrating genuine understanding. Some
participants explicitly stated they could not identify the bug. The
survey also asked the participants to explain their bug repairs, and
their answers could also indicate understanding (or lack thereof).
For example, participant 36 stated that “A patch was given and
using that suggestion in the code helped resolve the test failure”;
others stated outright that they could not repair the bug.

Our data indicate that suggestion quality strongly impacts par-
ticipants’ understanding of the defects. In 27 of the 89 (30.3%) times
participants received correct suggestions (whether APR-generated
or developer-provided), the participants failed to demonstrate un-
derstanding of the underlying defect, compared to 30 of the 40
(75%) cases where participants received deceptive suggestions; this
difference is statistically significant at 𝛼 = 0.05 (via a z-test for
differences in proportions).

1025

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Hadeel Eladawy, Claire Le Goues, and Yuriy Brun

Regardless of suggestion source, participants often submitted
patches even when they did not understand the underlying defect:
20 of the 27 times (74%) for correct suggestions, and 23 of the
30 times (76%) for deceptive suggestions. These proportions are
indistinguishable statistically. As to the remaining cases, when
starting from a correct suggestion, 3 times, participants augmented
a correct suggestion with extra code that, nonetheless, resulted in
a correct patch; 2 wrote a different patch from scratch; 1 failed to
submit a patch; and 1 thought the defect was in the test andmodified
the test instead. For those who received deceptive suggestions, 1
failed to submit a patch, and 6 wrote different patches from scratch.

Finding: Having access to a correct suggestion signifi-
cantly improved the odds of the participants understand-
ing the defect. However, when the participants failed to
understand the defect, there was no difference in whether
they used the suggestion as a patch between correct and
deceptive suggestions.

Finally, we wanted to gauge the overall impression participants
had of debugging with code suggestions. In the exit survey, we
asked them to “describe their overall experience using the suggested
patches when debugging,” with the possible answer choices of “they
helped me fix the bugs,” “they helped me locate the bugs but not
directly fix them,” “they directedme in the right direction,” and “they
confused me.” Of all the participants, 90.0% said that the suggestions
helped them fix the bugs (47.5%) or helped them locate but bugs but
not directly fix them (42.5%). Only 7.5% said the suggestions directed
them in the right direction, and only 2.5% (one participant) said they
confused him. Further, when asked how likely they are to use a tool
that automatically generates suggested patches, their responses’
mean rating was 9.0 on a scale of 0 to 10 (standard deviation of
1.6). Overall, participants overwhelmingly found suggestions useful
when debugging and would use APR tools in the future.

4.6 Threats to Validity
To support external validity of our results, we used the well-es-
tablished Defects4J benchmark of real-world projects with defects
that occurred during development [28]. However, our study design
required selecting defects for which at least two of three state-
of-the-art APR tools produced a patch. This selection could have
biased our study toward specific types of defects APR is more likely
to work on, such as perhaps simpler defects. We partially mitigated
this risk by ensuring the defects were not too easy to debug.

Our user study used 40 participants, which is within range of
higher data confidence and is above average for similar user stud-
ies [4, 11, 26, 55, 69]. We used students, but studies have demon-
strated that conclusions based on evaluations that use students can
generalize to the broader developer community [64, 67].

We report results of proper statistical tests, including effect sizes,
for all our findings, increasing the chance our claims generalize.
To improve reproducibility, we release our study materials and
anonymized data. However, to be practical, our study makes several
design decisions that could affect generalizability to real world
scenarios. The participants were given a target of 30 minutes to
complete each debugging task, whereas such a limit is unlikely

in the real world. The participants worked alone and could not
seek the help of other developers. The participants were not the
original developers of the projects they were debugging. Finally,
our study did not investigate whether informing the participants of
the source of the code suggestion they were given, e.g., telling them
an automated tool produced the suggestion, would affect behavior.

5 RELATEDWORK
APR techniques have historically been categorized into heuristic,
learning-based or constraint-based repair [38]. Heuristic repair
techniques use a set of heuristic modification strategies or edit
templates and a generate-and-test methodology to search through
the space of possible patched programs. Each variant, produced
by instantiating one or more edit templates, is validated using the
program’s tests. If a variant passes all tests, it is considered to patch
the defect.

Heuristics can come from one of three possible sources. The
first is a set of low-level code mutations, deletions, and insertions
that either delete or copy code from elsewhere (e.g., other parts
of the project), or mutate it by, e.g., changing a + to a -. GenProg
is one of the early examples of such an APR technique [37, 81],
with many more recent advances since [18, 25, 62, 76, 84]. The
second is a set of manually defined templates for changing the
code, e.g., extracted from manual inspections of human-written
fixes, as in the case of Par [30] and TBar [39]. The third is a set of
templates for changing the code learned automatically, via machine
learning [8, 22, 32, 41, 98]. Learning-based techniques [43, 86, 89, 93]
for producing fixed code directly have recently received a boost
from advances in neural techniques and large language models.

Constraint-based repair approaches, such as AutoFix-E [79], SOS-
Repair [1], Clara [21], SearchRepair [29], Angelix [47], and Sem-
Graft [46], translate the behavioral information available from tests
or specifications into constants. Then, they synthesize patches guar-
anteed by construction to satisfy those constraints, though these
patches may not necessarily repair the defect as the constraints
are typically partial. Finally, these approaches again validating
the patches using tests, sometimes generated against a reference
implementation [46].

Researchers have attempted many approaches to improve APR
repair rates and patch quality. For example, the effectiveness of the
underlying fault localization has been shown to have significant
impact [40], and so different localization strategies can improve
APR [2, 24, 33, 42, 72, 90]. Advances in heuristic-based search for
candidate patch generating can similarly improve APR [25, 37, 41,
62, 76], as can learning-based methods [8, 22, 66], and improved
patch-validation methodologies [75, 77, 91, 94, 96]. Automatically
inferring test oracles from specifications [5, 20, 52, 97], and then
increasing the quality of tests used for repair can, similarly, im-
prove patch quality. While not true in general APR applications,
in some domains, the overfitting problem can be solved through
other means. For example, for synthesis and repair of formal ver-
ification proofs, a theorem prover provides an absolute oracle of
correctness [12–14, 68, 92]. And if a reference implementation is
available for the program being repaired, comparing behavior to
that implementation can reduce overfitting [46]. For repair of meta
properties, such as software fairness [6, 16], statistical analyses

1026

Automated Program Repair, What Is It Good For? Not Absolutely Nothing! ICSE ’24, April 14–20, 2024, Lisbon, Portugal

of observed behavior can provide high-confidence guarantees of
correctness [19, 23, 48, 74, 78]. Yet for repair of other properties,
such as those of the data software uses, testing remains the best
available approach [56, 57].

APR can be evaluated along many dimensions, such as the qual-
ity of the patches it produces [54], the impact of other technology
on APR success [40], the maintainability of its patches [15], its
effectiveness on real-world defects [10, 36, 45, 54, 70], etc. While
many APR efforts focus on full automation, the notion of combin-
ing APR with manual debugging has been around for nearly two
decades [80], and some evaluations have focused on humans, either
to judge the patches, or observe the impact on humans.

Less than 7% of APR research papers include an evaluation with
users, and some that do are rudimentary (e.g., a single partici-
pant) [85]. In 2014, a study [73] with 44 students, 28 engineers, and
23 crowdsourced workers conducted an evaluation of APR patches
produced by very early APR tools (GenProg [37, 81] and Par [30]).
The study measured the impact of access to defect locations, low-
quality suggestions, and high-quality suggestions on debugging;
suggestion quality was judged by humans, conflating correctness,
maintainability, and other factors. The study found that 71% of
patches submitted by participants with access to high-quality sug-
gestions were correct, whereas 48% were correct for participants
with access only to the defect location, and 33% with access to
low-quality suggestions. With high-quality suggestions, partici-
pants took an average of 14.7 minutes to produce a patch, but 17.6
minutes with defect location, and 16.3 minutes with low-quality
suggestions. By contrast, with the benefit of a decade of APR re-
search, our study uses more advanced, state-of-the-art APR tools,
slightly more defects, and more precise methodologies for evalu-
ating patch quality [35, 54, 65, 69]. Further, our study evaluates
the impact of both the APR-generated and developer-written code
suggestions. Our results support the prior study’s finding that (for
our more rigorous definition of quality) high-quality suggestions
improve and low-quality suggestions hurt both debugging speed
and the quality of the resulting patches.

Other APR user studies are complementary to ours. Cambronero
et al. [7] gave all participants code with a single-line defect, tests,
and which line contained the defect. Half of participants had access
to five APR-generated code suggestions, all modifying the defective
line, and all validated to pass the tests, but only one of which
was correct. Access to the five code suggestions neither increased
the correctness of the submitted patches, nor reduced the time
to produce patches. Meanwhile Noller et al. [59] surveyed 103
participants from software companies and crowdsourcing platforms
to gauge their opinions of APR. They found that without in-depth
manual review, fulltime developers did not trust APR suggestions
and wanted to see evidence of patch correctness; that participants
expected APR to produce suggestions within 30–60 minutes and
not to interact with APR directly; and that additional artifacts, such
as tests or analysis results can increase trust.

6 CONTRIBUTIONS
Relatively little research has investigated the impact of APR on the
human-driven debugging process, despite the fact that industrial
APR deployments follow this approach [3, 44]. Our 40-developer

controlled user study investigated precisely that impact, showing
that the benefits of correct APR suggestions may be significantly
greater than the risks of deceptive ones. Developers showed a
strong ability to identify deceptive APR suggestions, even if, ulti-
mately, they were driven to produce overfitting patches from such
suggestions, perhaps implying that further experience with using
APR for manual debugging can improve the process. Surprisingly,
however, we found no evidence that programming experience im-
proved the effect of APR on debugging. Overall, our study provides
strong evidence of promise for APR-mediated, human-driven debug-
ging, despite existing challenges in APR-generated repair quality.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation under
grants no. CCF-1750116 and CCF-2210243.

REFERENCES
[1] Afsoon Afzal, Manish Motwani, Kathryn T. Stolee, Yuriy Brun, and Claire Le

Goues. 2021. SOSRepair: Expressive Semantic Search for Real-World Program
Repair. IEEE Transactions on Software Engineering (TSE) 47, 10 (October 2021),
2162–2181. https://doi.org/10.1109/TSE.2019.2944914

[2] Fatmah Yousef Assiri and James M Bieman. 2017. Fault Localization for Auto-
mated Program Repair: Effectiveness, Performance, Repair Correctness. Software
Quality Journal 25, 1 (2017), 171–199. https://doi.org/10.1007/s11219-016-9312-z

[3] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
Learning to fix bugs automatically. Proceedings of the ACM on Programming
Languages (PACMPL) Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) issue 3 (October 2019). https://doi.org/10.1145/3360585

[4] Titus Barik, Yoonki Song, Brittany Johnson, and Emerson Murphy-Hill. 2016.
From quick fixes to slow fixes: Reimagining static analysis resolutions to enable
design space exploration. In International Conference on Software Maintenance
and Evolution (ICSME). 211–221. https://doi.org/10.1109/ICSME.2016.63

[5] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D.
Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018. Translating code
comments to procedure specifications. In International Symposium on Software
Testing and Analysis (ISSTA). 242–253. https://doi.org/10.1145/3213846.3213872

[6] Yuriy Brun andAlexandraMeliou. 2018. Software Fairness. InACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE) NIER Track. 754–759. https://doi.org/10.1145/3236024.
3264838

[7] José Pablo Cambronero, Jiasi Shen Jürgen Cito, Elena Glassman, and Martin
Rinard. 2019. Characterizing Developer Use of Automatically Generated Patches.
In IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
181–185. https://doi.org/10.1109/VLHCC.2019.8818884

[8] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noël Pouchet,
Denys Poshyvanyk, and Martin Monperrus. 2019. Sequencer: Sequence-to-
sequence learning for end-to-end program repair. IEEE Transactions on Software
Engineering (2019). https://doi.org/10.1109/TSE.2019.2940179

[9] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019.
Empirical Review of Java Program Repair Tools: A Large-scale Experiment
on 2,141 Bugs and 23,551 Repair Attempts. In ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). 302–313. https://doi.org/10.1145/3338906.3338911

[10] Thomas Durieux, Matias Martinez, Martin Monperrus, Romain Sommerard, and
Jifeng Xuan. 2015. Automatic Repair of Real Bugs: An Experience Report on the
Defects4J Dataset. CoRR abs/1505.07002 (2015). http://arxiv.org/abs/1505.07002

[11] Laura Faulkner. 2003. Beyond the five-user assumption: Benefits of increased
sample sizes in usability testing. Behavior Research Methods, Instruments, &
Computers 35, 3 (2003), 379–383. https://doi.org/10.3758/BF03195514

[12] Emily First and Yuriy Brun. 2022. Diversity-Driven Automated Formal Veri-
fication. In International Conference on Software Engineering (ICSE). 749–761.
https://doi.org/10.1145/3510003.3510138

[13] Emily First, Yuriy Brun, and Arjun Guha. 2020. TacTok: Semantics-Aware Proof
Synthesis. Proceedings of the ACM on Programming Languages (PACMPL) OOPSLA
issue 4 (Nov. 2020), 231:1–231:31. https://doi.org/10.1145/3428299

[14] Emily First, Markus Rabe, Talia Ringer, and Yuriy Brun. 2023. Baldur: Whole-
Proof Generation and Repair with Large LanguageModels. InACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). 1229–1241. https://doi.org/10.1145/3611643.3616243

[15] Zachary P. Fry, Bryan Landau, and Westley Weimer. 2012. A human study
of patch maintainability. In International Symposium on Software Testing and

1027

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Hadeel Eladawy, Claire Le Goues, and Yuriy Brun

Analysis (ISSTA). 177–187. https://doi.org/10.1145/2338965.2336775
[16] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Fairness Testing:

Testing Software for Discrimination. In ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
498–510. https://doi.org/10.1145/3106237.3106277

[17] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software
Repair: A Survey. IEEE Transactions on Software Engineering (TSE) 45, 1 (2019),
34–67. https://doi.org/10.1109/TSE.2017.2755013

[18] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical Program
Repair via Bytecode Mutation. In International Symposium on Software Testing
and Analysis (ISSTA). 19–30. https://doi.org/10.1145/3293882.3330559

[19] Stephen Giguere, Blossom Metevier, Yuriy Brun, Bruno Castro da Silva, Philip S.
Thomas, and Scott Niekum. 2022. Fairness Guarantees under Demographic
Shift. In International Conference on Learning Representations (ICLR). 24 pages.
https://openreview.net/forum?id=wbPObLm6ueA

[20] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Auto-
matic generation of oracles for exceptional behaviors. In International Sympo-
sium on Software Testing and Analysis (ISSTA). 213–224. https://doi.org/10.1145/
2931037.2931061

[21] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. 2018. Automated Clustering
and ProgramRepair for Introductory ProgrammingAssignments. In Programming
Language Design and Implementation (PLDI). 465–480. https://doi.org/10.1145/
3192366.3192387

[22] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish K. Shevade. 2017. DeepFix:
Fixing Common C Language Errors by Deep Learning. In National Conference on
Artificial Intelligence (AAAI). 1345–1351. https://doi.org/10.1609/aaai.v31i1.10742

[23] Austin Hoag, James E. Kostas, Bruno Castro da Silva, Philip S. Thomas, and Yuriy
Brun. 2023. Seldonian Toolkit: Building Software with Safe and Fair Machine
Learning. In International Conference on Software Engineering (ICSE) Demo Track.
107–111. https://doi.org/10.1109/ICSE-Companion58688.2023.00035

[24] Jiajun Jiang, Yingfei Xiong, and Xin Xia. 2019. A manual inspection of Defects4J
bugs and its implications for automatic program repair. Science China Information
Sciences 62, 10 (2019), 200102. https://doi.org/10.1007/s11432-018-1465-6

[25] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping Program Repair Space with Existing Patches and Similar Code.
In International Symposium on Software Testing and Analysis (ISSTA). 298–309.
https://doi.org/10.1145/3213846.3213871

[26] Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2020. Causal Testing:
Understanding Defects’ Root Causes. In International Conference on Software
Engineering (ICSE). 87–99. https://doi.org/10.1145/3377811.3380377

[27] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test
information to assist fault localization. In International Conference on Software
Engineering (ICSE). 467–477. https://doi.org/10.1145/581339.581397

[28] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A data-
base of existing faults to enable controlled testing studies for Java programs.
In International Symposium on Software Testing and Analysis (ISSTA). 437–440.
https://doi.org/10.1145/2610384.2628055

[29] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing
Programs with Semantic Code Search. In International Conference on Automated
Software Engineering (ASE). 295–306. https://doi.org/10.1109/ASE.2015.60

[30] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In International Confer-
ence on Software Engineering (ICSE). 802–811. https://doi.org/10.1109/ICSE.2013.
6606626

[31] Serkan Kirbas, Etienne Windels, Olayori McBello, Kevin Kells, Matthew Pagano,
Rafal Szalanski, Vesna Nowack, Emily Rowan Winter, Steve Counsell, David
Bowes, Tracy Hall, Saemundur Haraldsson, and John Woodward. 2021. On The
Introduction of Automatic Program Repair in Bloomberg. IEEE Software 38, 4
(2021), 43–51. https://doi.org/10.1109/MS.2021.3071086

[32] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. 2020. FixMiner: Mining Relevant Fix
Patterns for Automated Program Repair. Empirical Software Engineering 25, 3
(May 2020), 1980–2024. https://doi.org/10.1007/s10664-019-09780-z

[33] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Martin Mon-
perrus, Jacques Klein, and Le Yves Traon. 2019. IFixR: Bug Report Driven
Program Repair. In ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE). 314–325.
https://doi.org/10.1145/3338906.3338935

[34] Herb Krasner. 2020. The Cost of Poor Software Quality in the US: A 2020 Report.
https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf.

[35] Xuan Bach D. Le, Lingfeng Bao, David Lo, Xin Xia, Shanping Li, and Corina S.
Pasareanu. 2019. On Reliability of Patch Correctness Assessment. In International
Conference on Software Engineering (ICSE). 524–535. https://doi.org/10.1109/
ICSE.2019.00064

[36] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A systematic study of automated program repair: Fixing 55 out of 105
bugs for $8 each. In International Conference on Software Engineering (ICSE). 3–13.
https://doi.org/10.1109/ICSE.2012.6227211

[37] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions on
Software Engineering (TSE) 38 (2012), 54–72. https://doi.org/10.1109/TSE.2011.104

[38] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
Program Repair. Communications of the ACM 62, 12 (Nov. 2019), 56–65. https:
//doi.org/10.1145/3318162

[39] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar:
Revisiting Template-Based Automated Program Repair. In International Sympo-
sium on Software Testing and Analysis (ISSTA). 31–42. https://doi.org/10.1145/
3293882.3330577

[40] Kui Liu, Li Li, Anil Koyuncu, Dongsun Kim, Zhe Liu, Jacques Klein, and
Tegawendé F Bissyandé. 2021. A critical review on the evaluation of automated
program repair systems. Journal of Systems and Software 171 (2021), 110817.
https://doi.org/10.1016/j.jss.2020.110817

[41] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning
Correct Code. In Symposium on Principles of Programming Languages (POPL).
298–312. https://doi.org/10.1145/2837614.2837617

[42] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao, and
Lu Zhang. 2020. Can Automated Program Repair Refine Fault Localization? A
Unified Debugging Approach. In International Symposium on Software Testing
and Analysis (ISSTA). 75–87. https://doi.org/10.1145/3395363.3397351

[43] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. CoCoNuT: Combining Context-Aware Neural Translation Models
Using Ensemble for Program Repair. In International Symposium on Software
Testing and Analysis (ISSTA). 101–114. https://doi.org/10.1145/3395363.3397369

[44] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,
Ke Mao, Alexander Mols, and Andrew Scott. 2019. SapFix: Automated End-to-
End Repair at Scale. In International Conference on Software Engineering (ICSE).
269–278. https://doi.org/10.1109/ICSE-SEIP.2019.00039

[45] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. 2017. Automatic Repair of Real Bugs in Java: A Large-Scale Exper-
iment on the Defects4J Dataset. Empirical Software Engineering (EMSE) 22, 4
(April 2017), 1936–1964. https://doi.org/10.1007/s10664-016-9470-4

[46] Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske, and Ab-
hik Roychoudhury. 2018. Semantic Program Repair Using a Reference Imple-
mentation. In International Conference on Software Engineering (ICSE). 129–139.
https://doi.org/10.1145/3180155.3180247

[47] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In International Con-
ference on Software Engineering (ICSE). 691–701. https://doi.org/10.1145/2884781.
2884807

[48] Blossom Metevier, Stephen Giguere, Sarah Brockman, Ari Kobren, Yuriy Brun,
Emma Brunskill, and Philip S. Thomas. 2019. Offline Contextual Bandits with
High Probability Fairness Guarantees. InAnnual Conference on Neural Information
Processing Systems (NeurIPS). 14893–14904. http://papers.neurips.cc/paper/9630-
offline-contextual-bandits-with-high-probability-fairness-guarantees

[49] Martin Monperrus. 2018. Automatic Software Repair: A Bibliography. ACM
Computing Surveys 51, 1 (Jan. 2018), 17:1–17:24. https://doi.org/10.1145/3105906

[50] Martin Monperrus. 2018. The Living Review on Automated Program Repair. Tech-
nical Report hal-01956501. HAL/archives-ouvertes.fr. https://hal.science/hal-
01956501

[51] Manish Motwani. 2022. High-Quality Automatic Program Repair. Ph. D. Disserta-
tion. University of Massachusetts. https://doi.org/10.7275/30288519

[52] ManishMotwani and Yuriy Brun. 2019. Automatically Generating Precise Oracles
from Structured Natural Language Specifications. In International Conference on
Software Engineering (ICSE). 188–199. https://doi.org/10.1109/ICSE.2019.00035

[53] Manish Motwani and Yuriy Brun. 2023. Better Automatic Program Repair by
Using Bug Reports and Tests Together. In International Conference on Software
Engineering (ICSE). 1229–1241. https://doi.org/10.1109/ICSE48619.2023.00109

[54] ManishMotwani, Mauricio Soto, Yuriy Brun, René Just, and Claire Le Goues. 2022.
Quality of Automated Program Repair on Real-World Defects. IEEE Transactions
on Software Engineering (TSE) 48, 2 (Feb. 2022), 637–661. https://doi.org/10.1109/
TSE.2020.2998785

[55] Kıvanç Muşlu, Yuriy Brun, Michael D. Ernst, and David Notkin. 2015. Reducing
feedback delay of software development tools via continuous analyses. IEEE
Transactions on Software Engineering (TSE) 41, 8 (August 2015), 745–763. https:
//doi.org/10.1109/TSE.2015.2417161

[56] Kıvanç Muşlu, Yuriy Brun, and Alexandra Meliou. 2013. Data Debugging with
Continuous Testing. In ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE) New Ideas
Track. 631–634. https://doi.org/10.1145/2491411.2494580

[57] Kıvanç Muşlu, Yuriy Brun, and Alexandra Meliou. 2015. Preventing Data Errors
with Continuous Testing. In International Symposium on Software Testing and
Analysis (ISSTA). 373–384. https://doi.org/10.1145/2771783.2771792

[58] Kunihiro Noda, Yusuke Nemoto, Keisuke Hotta, Hideo Tanida, and Shinji Kikuchi.
2020. Experience Report: How Effective is Automated Program Repair for In-
dustrial Software?. In International Conference on Software Analysis, Evolution,
and Reengineering (SANER). 612–616. https://doi.org/10.1109/SANER48275.2020.

1028

Automated Program Repair, What Is It Good For? Not Absolutely Nothing! ICSE ’24, April 14–20, 2024, Lisbon, Portugal

9054829
[59] Yannic Noller, Ridwan Salihin Shariffdeen, Xiang Gao, and Abhik Roychoudhury.

2022. Trust Enhancement Issues in Program Repair. In International Conference on
Software Engineering (ICSE). 2228–2240. https://doi.org/10.1145/3510003.3510040

[60] Devon H. O’Dell. 2017. The Debugging Mindset: Understanding the Psychology
of Learning Strategies Leads to Effective Problem-Solving Skills. Queue 15, 1 (Feb.
2017), 71–90. https://doi.org/10.1145/3055301.3068754

[61] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques
actually helping programmers?. In International Symposium on Software Testing
and Analysis (ISSTA). 199–209. https://doi.org/10.1145/2001420.2001445

[62] Justyna Petke and Aymeric Blot. 2018. Refining Fitness Functions in Test-Based
Program Repair. In International Workshop on Automated Program Repair (APR).
13–14. https://doi.org/10.1145/3387940.3392180

[63] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David R. White, and John R. Woodward. 2018. Genetic Improvement of Software:
A Comprehensive Survey. IEEE Transactions on Evolutionary Computation (TEVC)
22, 3 (June 2018), 415–432. https://doi.org/10.1109/TEVC.2017.2693219

[64] Raphael Pham, Stephan Kiesling, Olga Liskin, Leif Singer, and Kurt Schneider.
2014. Enablers, Inhibitors, and Perceptions of Testing in Novice Software Teams.
In ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE). 30–40. https://doi.org/10.1145/2635868.2635925

[65] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An Analysis of
Patch Plausibility and Correctness for Generate-and-validate Patch Generation
Systems. In International Symposium on Software Testing and Analysis (ISSTA).
24–36. https://doi.org/10.1145/2771783.2771791

[66] Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad. 2017. Elixir:
Effective object oriented program repair. In International Conference on Automated
Software Engineering (ASE). 648–659. https://doi.org/10.1109/ASE.2017.8115675

[67] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. 2015. Are Students Repre-
sentatives of Professionals in Software Engineering Experiments?. In International
Conference on Software Engineering (ICSE). 666–676. https://doi.org/10.1109/
ICSE.2015.82

[68] Alex Sanchez-Stern, Emily First, Timothy Zhou, Zhanna Kaufman, Yuriy Brun,
and Talia Ringer. 2023. Passport: Improving Automated Formal Verification
Using Identifiers. ACM Transactions on Programming Languages and Systems
(TOPLAS) 45, 2, Article 12 (June 2023), 30 pages. https://doi.org/10.1145/3593374

[69] Edward K. Smith, Earl Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the Cure
Worse than the Disease? Overfitting in Automated Program Repair. In ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE). 532–543. https://doi.org/10.1145/2786805.
2786825

[70] Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Martin Monperrus, and de
Marcelo Almeida Maia. 2018. Dissection of a bug dataset: Anatomy of 395 patches
from Defects4J. In International Conference on Software Analysis, Evolution, and
Reengineering (SANER). 130–140. https://doi.org/10.1109/SANER.2018.8330203

[71] Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Martin Monperrus, and
Marcelo A. Maia. 2023. Defects4J@Dissection. https://program-repair.org/
defects4j-dissection/.

[72] Shuyao Sun, Junxia Guo, Ruilian Zhao, and Zheng Li. 2018. Search-Based Ef-
ficient Automated Program Repair Using Mutation and Fault Localization. In
International Computer Software and Applications Conference (COMPSAC), Vol. 1.
174–183. https://doi.org/10.1109/COMPSAC.2018.00030

[73] Yida Tao, Jindae Kim, Sunghun Kim, and Chang Xu. 2014. Automatically
Generated Patches As Debugging Aids: A Human Study. In ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE). 64–74.
https://doi.org/10.1145/2635868.2635873

[74] Philip S. Thomas, Bruno Castro da Silva, Andrew G. Barto, Stephen Giguere,
Yuriy Brun, and Emma Brunskill. 2019. Preventing Undesirable Behavior of
Intelligent Machines. Science 366, 6468 (22 November 2019), 999–1004. https:
//doi.org/10.1126/science.aag3311

[75] Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques Klein,
and Tegawendé F. Bissyandé. 2020. Evaluating Representation Learning of Code
Changes for Predicting Patch Correctness in Program Repair. In International
Conference on Automated Software Engineering (ASE). 981–992. https://doi.org/
10.1145/3324884.3416532

[76] Yuchi Tian and Baishakhi Ray. 2017. Automatically diagnosing and repairing
error handling bugs in C. In ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE). 752–762.
https://doi.org/10.1145/3106237.3106300

[77] Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou,
Xiaoguang Mao, and Hai Jin. 2020. Automated Patch Correctness Assessment:
How Far Are We?. In International Conference on Automated Software Engineering
(ASE). Association for Computing Machinery, 968–980. https://doi.org/10.1145/
3324884.3416590

[78] Aline Weber, Blossom Metevier, Yuriy Brun, Philip S. Thomas, and Bruno Cas-
tro da Silva. 2022. Enforcing Delayed-Impact Fairness Guarantees. CoRR
abs/2208.11744 (2022), 24 pages. https://arxiv.org/abs/2208.11744.

[79] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand Meyer,
and Andreas Zeller. 2010. Automated fixing of programs with contracts. In
International Symposium on Software Testing and Analysis (ISSTA). 61–72. https:
//doi.org/10.1145/1831708.1831716

[80] Westley Weimer. 2006. Patches As Better Bug Reports. In International Conference
on Generative Programming and Component Engineering (GPCE). 181–190. https:
//doi.org/10.1145/1173706.1173734

[81] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
2009. Automatically finding patches using genetic programming. In International
Conference on Software Engineering (ICSE). 364–374. https://doi.org/10.1109/
ICSE.2009.5070536

[82] Mark Weiser. 1981. Program Slicing. In International Conference on Software
Engineering (ICSE). 439–449.

[83] Mark Weiser. 1984. Program Slicing. IEEE Transactions on Software Engineering
(TSE) 10, 4 (July 1984), 352–357. https://doi.org/10.1109/TSE.1984.5010248

[84] Aaron Weiss, Arjun Guha, and Yuriy Brun. 2017. Tortoise: Interactive Sys-
tem Configuration Repair. In International Conference on Automated Software
Engineering (ASE). 625–636. https://doi.org/10.1109/ASE.2017.8115673

[85] Emily Winter, Vesna Nowack, David Bowes, Steve Counsell, Tracy Hall, Sæ-
mundur Haraldsson, and John Woodward. 2023. Let’s Talk With Develop-
ers, Not About Developers: A Review of Automatic Program Repair Research.
IEEE Transactions on Software Engineering (TSE) 49, 1 (2023), 419–436. https:
//doi.org/10.1109/TSE.2022.3152089

[86] Chunqiu Steven Xia and Lingming Zhang. 2022. Less Training, More Repairing
Please: Revisiting Automated Program Repair via Zero-Shot Learning. In ACM
Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE). 959–971. https://doi.org/10.1145/
3540250.3549101

[87] Xin Xia, Lingfeng Bao, David Lo, and Shanping Li. 2016. “Automated Debugging
Considered Harmful” Considered Harmful: A User Study Revisiting the Useful-
ness of Spectra-Based Fault Localization Techniques with Professionals Using
Real Bugs from Large Systems. In IEEE International Conference on Software Main-
tenance and Evolution (ICSME). 267–278. https://doi.org/10.1109/ICSME.2016.67

[88] Xiaoyuan Xie, Zicong Liu, Shuo Song, Zhenyu Chen, Jifeng Xuan, and Baowen
Xu. 2016. Revisit of Automatic Debugging via Human Focus-Tracking Analysis.
In International Conference on Software Engineering (ICSE). 808–819. https:
//doi.org/10.1145/2884781.2884834

[89] Deheng Yang, XiaoguangMao, Liqian Chen, Xuezheng Xu, Yan Lei, David Lo, and
Jiayu He. 2023. TransplantFix: Graph Differencing-Based Code Transplantation
for Automated Program Repair. In International Conference on Automated Software
Engineering (ASE). 107:1–107:13. https://doi.org/10.1145/3551349.3556893

[90] Deheng Yang, Yuhua Qi, and Xiaoguang Mao. 2018. Evaluating the Strategies of
Statement Selection in Automated Program Repair. In International Conference
on Software Analysis, Testing, and Evolution (SATE). 33–48. https://doi.org/10.
1007/978-3-030-04272-1_3

[91] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. 2017. Better Test
Cases for Better Automated Program Repair. In ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). 831–841. https://doi.org/10.1145/3106237.3106274

[92] Kaiyu Yang and Jia Deng. 2019. Learning to prove theorems via interacting
with proof assistants. In International Conference on Machine Learning (ICML).
15 pages. http://proceedings.mlr.press/v97/yang19a/yang19a.pdf

[93] He Ye, Matias Martinez, Xiapu Luo, Tao Zhang, and Martin Monperrus. 2023.
SelfAPR: Self-Supervised Program Repair with Test Execution Diagnostics. In
International Conference on Automated Software Engineering (ASE). 92:1–92:13.
https://doi.org/10.1145/3551349.3556926

[94] He Ye, Matias Martinez, and Martin Monperrus. 2021. Automated patch assess-
ment for program repair at scale. Empirical Software Engineering 26, 2 (2021),
1–38. https://doi.org/10.1007/s10664-020-09920-w

[95] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi N.
Bairavasundaram. 2011. How Do Fixes Become Bugs?. In ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). 26–36. https://doi.org/10.1145/2025113.2025121

[96] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux, and Martin
Monperrus. 2019. Alleviating Patch Overfitting with Automatic Test Generation:
A Study of Feasibility and Effectiveness for the Nopol Repair System. Empirical
Software Engineering (EMSE) 24, 1 (Feb. 2019), 33–67. https://doi.org/10.1007/
s10664-018-9619-4

[97] Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang,
Shiqing Ma, Lin Tan, and Xiangyu Zhang. 2020. C2S: Translating Natural Lan-
guage Comments to Formal Program Specifications. In ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). 25–37. https://doi.org/10.1145/3368089.3409716

[98] Qihao Zhu, Zeyu Sun, Yuan an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A Syntax-Guided Edit Decoder for Neural Program Repair.
In ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). 341–353. https://doi.org/10.
1145/3468264.3468544

1029

