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Abstract—Software developers often struggle to update APIs,
leading to manual, time-consuming, and error-prone processes.
We introduce MELT, a new approach that generates lightweight
API migration rules directly from pull requests in popular library
repositories. Our key insight is that pull requests merged into
open-source libraries are a rich source of information sufficient
to mine API migration rules. By leveraging code examples
mined from the library source and automatically generated code
examples based on the pull requests, we infer transformation
rules in Comby, a language for structural code search and replace.
Since inferred rules from single code examples may be too
specific, we propose a generalization procedure to make the rules
more applicable to client projects. MELT rules are syntax-driven,
interpretable, and easily adaptable. Moreover, unlike previous
work, our approach enables rule inference to seamlessly integrate
into the library workflow, removing the need to wait for client
code migrations. We evaluated MELT on pull requests from
four popular libraries, successfully mining 461 migration rules
from code examples in pull requests and 114 rules from auto-
generated code examples. Our generalization procedure increases
the number of matches for mined rules by 9×. We applied these
rules to client projects and ran their tests, which led to an overall
decrease in the number of warnings and fixing some test cases
demonstrating MELT’s effectiveness in real-world scenarios.

I. INTRODUCTION

Developers often make use of third-party libraries [1], which

provide modular functionality to clients through an Appli-

cation Programming Interface (API). The API is a contract

between the library and its clients, separating the concrete

implementation of library features from its specification.

Ideally, APIs should remain stable. However, they change

frequently, and API contracts are often broken [2], [3], [4],

for reasons ranging from bug fixes, to changes in library

requirements [5]. APIs may become deprecated or obsolete

[6], requiring clients to adapt their code to reflect the newest

library version. These kinds of non-functional code changes

are known as software refactoring [7], a primarily manual [8]

and error-prone [9] task. To migrate to a new library version,

clients must examine the library changes such as by inspecting

documentation or source code. This task’s complexity often

deters library clients from updating altogether, despite the

security risks posed by outdated dependencies [10] [11].

The widespread prevalence of deprecations and breaking

changes in the software ecosystem motivates research efforts

in automating migration [12], [13], [14], [15], [16], [17]. Tools

for API migration typically either mine commits from library

client projects that have undergone migrations [15], [16], [12],

or are supplemented by information from new client projects

in the most up-to-date APIs [14]. The effectiveness of these

tools is hindered by their reliance on mining data from client

projects that have either already migrated across versions, or

are already using up-to-date APIs. Unfortunately, this data is

scarce: a recent study found that 81.5% [18] of projects keep

outdated dependencies. Additionally, the mining process can

only occur after clients begin transitioning between versions,

precluding use shortly after a new version of the library is

released [19], [20].

To overcome these limitations, we propose a new approach

called MELT. Unlike previous methods, MELT does not require

external data from clients. Instead, it leverages the fact that

the development process of open-source libraries provides a

wealth of high-quality information that is sufficient to generate

transition examples and mine transformation rules. At a high

level, our idea is to use pull requests (PRs) submitted to a
library’s repository to learn code transformation rules for
updating client code. This allows the integration of transfor-

mation rule mining into the development process.

Pull requests have become the de facto standard for open-

source software development on collaborative platforms like

GitHub [21], [22]. Pull requests typically include a title, a

natural language description of the proposed changes and how

they relate to project milestones or issues, and a set of commits

(i.e., code file changes). These are reviewed by a core group

of maintainers who determine to accept, request revisions, or

reject the changes.

We use information from pull requests merged into open-

source libraries to mine transformation rules that adapt client

code in light of breaking changes or deprecations. First, MELT
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uses natural language descriptions from PRs to identify API

changes by searching for keywords such as “deprecated”,

“breaking change”, and “API change”. If the PR corresponds

to such an API change, MELT first uses the commits in the
PRs that contain changes to the library code to generate
transformation rules. The internal updates to the library source

code and test cases serve as the ground truth for mining

transformation rules.

However, the code-level changes alone do not always pro-

vide sufficient information to mine thorough transformation

rules for a given breaking change. MELT therefore additionally

leverages the natural language text in pull requests to generate
additional code examples for mining. Specifically, we prompt

a state-of-the-art large language model (LLM) pre-trained on

open-source code to generate concise code examples that

clearly illustrate how to transition from the old API to the

new one. Using its prior knowledge of the library (obtained

from pretraining) and the additional information in the prompt,

the model can often infer how to transition from old APIs and

provide useful concrete examples.

Using the code examples mined from the library source and

the code examples automatically generated from the natural

language descriptions, we infer transformation rules in Comby

[23], [24], a tool and a language for structural code search

and replace. We choose to represent our transformation rules

in Comby because: (1) it allows us to express find-and-replace

rules in a concise and interpretable format; (2) it is a stable

widely adopted tool for syntax-driven code transformations.

There are multiple key advantages to our approach. Firstly,

MELT does not require client projects to infer transformation

rules. This contrasts with previous work [25], [26], [27], [28],

which require large datasets of training data containing multi-

ple migration examples to mine rules. Indeed, MELT can mine

migration rules even for changes that have not been in a library

release yet (i.e., they are due to future milestones). Secondly,

MELT uses Comby to express migration rules, which results in

easy-to-interpret, adaptable, and maintainable transformations.

In summary, our main contributions are as follows:

• We introduce a novel approach to extract rules that ad-

dress deprecations and breaking changes in open-source

software libraries that does not rely on client data.

• An LLM-driven approach for generating code examples

and test cases for transformation rule mining.

• A generalization procedure for transformation rules en-

hances their applicability in client projects.

• To facilitate integration into existing workflows, we

prototype a continuous integration (CI) solution using

GitHub Actions for library maintainers, so they can

integrate MELT in their workflows.1

• We evaluate MELT on four open-source libraries to infer

a total of 461 migration rules from code examples and

114 from auto generated code examples. We also evaluate

MELT end-to-end by migrating client code.

1https://github.com/squaresLab/melt action

Fig. 1: Code change in pull request #44539 [29] from the
pandas-dev/pandas repository.

TABLE I: Top: Comby rules extracted from pandas pull request
#44539, deprecating DataFrame.append and Series.append. Bottom:
Rules extracted from sci-py pull request #14419, including original
specific (“Spec”) and generalized (“Gen”) versions. Template variable
constraints are omitted for brevity.

Match Template Rewrite Template

:[[s2]].append(:[[s1]])
pd.concat([:[[s2]],
:[[s1]]])

where :[[s1]].type == Series
:[[s2]].type == Series

:[[df]].append(:[[s]])
pd.concat([:[[df]],
DataFrame(:[[s]]).T.
infer_objects()])

where :[[df]].type == DataFrame
:[[s]].type == Series

Type Match Template Rewrite Template

Spec
:[[s]].spline. :[[s]].cspline2d(
cspline2d(:[[x]],:[y]) :[[x]], :[y])

Gen
:[[s]].spline :[[s]].cspline2d(
cspline2d(:[args]) :[args])

II. MOTIVATION AND OVERVIEW

Figure 2 provides a high-level overview of MELT and

its main components. We delve into the specifics of each

component in Sections III and IV.

Pull requests are the input of MELT, as they are the key

source that informs our approach. Pull requests generally

contain all the code changes related to a given new feature.

For example, Figure 1 shows an example code change from a

pull request [29] submitted to pandas [30] that deprecates two

popular APIs: DataFrame.append and Series.append.2 MELT

identifies code changes, such as the one shown in Figure 1,

within the pull request using its Code Change Analyzer (Sec-

tion III-A) and inputs them into the Rule Inference algorithm

(Section IV-A) to generate rules. The top portion of Table I

shows two of the rules MELT infers from the code changes

for this specific pull request.

The rules in Table I are expressed in Comby’s domain specific

language [24]. The match template (left column) is the code

structure for which Comby searches. The rewrite template (right

column) shows how to transform the matched code based on

the variables in the match template [23]. Comby uses template

variables, i.e., placeholders that can be matched with certain

2Both APIs were later removed from pandas in version 2.0.0.
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Pull Request

Code diffs

Description

Code change
analyzer

Code generation
model new examples

Rule
Generalization

Rule 
FIltering

Rule
Inference

relevant examples

rules
filtered
rules

final set
of rules

Fig. 2: MELT overview. MELT takes as input a pull request (PR) and outputs a set of rules. The PR is processed in two ways: (1) the Code
change analyzer identifies relevant code changes; (2) the Code generation model generates additional code examples. Rules are inferred from
the code changes and examples using the rule inference algorithm, then filtered and generalized.

Fig. 3: Pull Request #14419 [33] from scipy/scipy. This pull
request was part of SciPy 1.8, released in February 2022.

language constructs. For example, a template variable to match

alphanumeric characters is represented by :[[x]], where x is

the name of the template variable. The template variables in

the match template can be constrained in multiple ways using

a where clause. In particular, to prevent spurious matches,

template variables can be constrained to be a certain type (like

:[[s2]].type == DataFrame). Although type information is not

strictly required, it is especially useful when working with

common API names such as append and concat, since both

are part of Python’s builtins list.

Code diffs in pull requests provide valuable information,

however, they do not always contain the necessary code exam-

ples for rule inference. Fortunately, pull requests offer alterna-

tive sources of information that can be used to extract further

details about the changing APIs. Figure 3 shows an informative

comment left by a developer in a code file when deprecating

namespace scipy’s [31] namespace scipy.signal.spline in

favor of scipy.signal. To leverage all available information

in the pull request, MELT uses a Code Generation Model
to generate additional code examples and test cases for this

change (Section III-B). Figure 4 shows a simplified version of

code GPT-4 [32] (a state-of-the-art model) generates from the

pull request in Figure 3. The generated examples enable us to

both infer and test the rules.

Since the test case executes successfully, MELT uses the

code example to generate a rule by abstracting concrete

identifiers and literals. For this case, MELT generates the

def old_usage1(image):
return signal.spline.cspline2d(image , 8.0)

def new_usage1(image):
return signal.cspline2d(image , 8.0)

class TestEquiv(unittest.TestCase):
def test_assert1(self):

np.random.seed (181819142)
image = np.random.rand(71, 73)
assert np.allclose(

old_usage1(image),
new_usage1(image))

Fig. 4: Code generated by GPT-4 showing how to transition from
the deprecated namespace for cspline2d and a test case.

rule in the third row of Table I. This rule accurately reflects

the deprecation made in the pull request (i.e., replaces the

deprecated namespace with the new one). Nevertheless, a

closer inspection reveals that the rule is too specific: it will

only match usages where: (1) the first argument of cspline2d is

an identifier (:[[s]] only matches with identifiers), and (2) the

function is called with two or more arguments. The cspline2d

function can accept multiple combinations of arguments, in-

cluding keyword arguments with default values.

To guard against overly-specific rules, MELT applies Rule
Generalization (Section IV-C). For example, the template

holes :[[x]] and :[y] in the rule in the first row of the

bottom of Table I remain unchanged in the match and rewrite

templates, indicating that they are not relevant to the change at

hand. To enhance the rule’s applicability, MELT generalizes the

specific argument combination, resulting in an updated version

of the rule (shown in the last row of Table I). The revised rule

uses a more permissive match template using :[args], which

can match any number of function arguments.

III. MINING PULL REQUESTS

In this section, we describe MELT’s approach to identify

and create code examples for rule inference.
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A. Extracting Code Examples from Code Diffs

MELT’s input is a pull request P , which contains both

natural language descriptions and a set of code diffs P.diffs,

each of which corresponds to changed code snippets. However,

not all diffs in a pull request are relevant to an API change, as

they may encompass unrelated refactoring actions. Therefore,

MELT first identifies which changes in the pull request are

relevant to the API of interest.

MELT determines which code changes are relevant using

its Code Change Analyzer. MELT starts by pinpointing which

public APIs are affected by the pull request by examin-

ing the scope of each code diff to identify the affected

function and its corresponding class. For example, for the

code change in Figure 1, MELT identifies the function name

test datatimeindex and the class where the function comes

from TestSeriesFormatting. MELT filters out test functions

and private namespaces, to exclude API names that are not

the main focus of the change.3 On this example, the test class

and method will be filtered, but other changes in the same PR

(not shown) affect the append and concat methods, so MELT

considers those methods relevant.

MELT then filters the code diffs to retain only those diffs

and surrounding code that contain at least one of the relevant

keywords. This produces a set of code examples to serve as

inputs to rule inference. For the pandas example, although the

test method itself is not a relevant API name, the code change

in that test method does concern relevant API calls, and so

these diffs will be retained for use in inference. A strength of

this approach is its generalizability across multiple libraries

and languages, since it works at token level.

B. Generating Additional Code Examples

As illustrated in Section II, pull requests sometimes lack

sufficient code examples to infer migration rules. In a pre-

liminary study, we analyzed 174 pull requests related to

breaking changes and deprecations from pandas’ release notes.

We discovered that only 41 (23.6%) of these pull requests

contained at least one meaningful code example showcasing

the transition from old to new usage. However, pull requests

offer other information sources about API changes, including

natural language descriptions in comments, developer dis-

cussions, and documentation. Our key insight is that this

additional data can also be leveraged to generate and test

more code examples. MELT uses a Code Generation Model
to produce extra code examples from this data. Generating

code examples rather than the rules directly is advantageous,

because we can test and validate the generated code, enhancing

confidence in the rules inferred from it. Additionally, the code

examples may enhance interpretability by demonstrating the

provenance of inferred rules to MELT users.

Algorithm 1 outlines our approach. Given a pull request and

a code generation model, MELT iterates for a fixed number

3Although our experiments do not exercise this setting, developers can also
provide the names of affected APIs when submitting the pull request, which
MELT can use directly to eliminate irrelevant code changes.

Fig. 5: Prompt template for the GENERATEEXAMPLE function in
Algorithm 1, featuring four placeholders: (1) library name, (2)
additional requirements for format consistency and correctness,
(3) a concrete example with summary and examples from pandas,
and (4) pr data, the PR information including title, description,
changed files, and corresponding diffs, as JSON.

of times N (based on the desired number of samples) and

asks the model to generate a transition example (line 3). Our

GENERATEEXAMPLE implementation prompts GPT-4 8K [32],

which is well-versed in our target libraries’ code, to process

PR information (code diffs, title, description, discussion) and

generate transition examples for the APIs affected in that PR.

Figure 5 shows the template used for the prompt.4 MELT

uses the model to generate a pair of code examples, eold and

enew, representing the old and new usages, respectively. While

eold uses the old API, enew is implemented using the new

API. Both examples are functions with identical signatures

but different implementations.

However, simply asking the model to generate a code exam-

ple is not enough, as there are no guarantees that enew has the

same semantics of eold. As a subsequent step, MELT generates

test cases that assess the equivalence between eold and enew
(line 4). In our implementation of GENERATETESTCASES,

MELT follows up with GPT-4 for test generation. The request

includes the original prompt, the model’s response, and the

text from Figure 6. GPT-4 generates test inputs and computes

4Full prompts are provided in the artifact at Zenodo [34].
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Fig. 6: Test case generation prompt. MELT concatenates the prompt
from Figure 5, the model’s response, and this prompt to ask the model
for tests for the generated examples.

Algorithm 1 GENERATETRANSITIONEXAMPLES(P,M, N )

Input: P: pull request,M: gen model, N : number of samples

Output: E: transition examples

1: E ← ∅
2: for i = 1 to N do
3: (eold, enew)← GENERATEEXAMPLE(M,P)
4: TE ← GENERATETESTCASES(M,P, eold, enew)
5: E ← E ∪ {(eold, enew)}
6: for each test ∈ TE do
7: if FAILS(test) then
8: E ← E \ {(eold, enew)}
9: end if

10: end for
11: end for
12: return E

their output on eold, which serve as an oracle to test enew.

The test case asserts that enew produces the same output as

eold for the same set of inputs.

After generating test cases, MELT checks whether any test

fails (lines 6-10). If any test case fails, the transition examples

for that test are discarded (line 8), as the new usage does not

behave similarly to the old one. MELT only considers examples

for which test cases were generated. This procedure outputs

a set of transition examples (when possible) that can then be

used to infer migration and test rules.

IV. RULE GENERATION

MELT uses the Comby language [23] and toolset for searching

and refactoring source code [24] to express migration rules.

(a) Code before migration

r = pd.read_csv(
filename ,
compression=comp ,
encoding=enc ,
index_col=0,

- squeeze=True)

(b) Code after migration

r = pd.read_csv(
filename ,
compression=comp ,
encoding=enc ,
index_col =0).

+ squeeze()

Fig. 7: Example code change from PR #43242 [36] in pandas

We introduced some elements of the language in Section II,

with examples of Comby’s syntax-driven match and rewrite

templates. Formally, a rewrite rule in Comby is of the form M −→
R where c1, c2, ..., cn, where M is the match template, R

is the rewrite template, and c1, c2, ..., cn are constraints in the

rule language. The key structure of Comby rules are template

variables, which are holes in the match and rewrite templates

that can be filled with code. Template variable types include,

e.g., :[[x]] matching alphanumeric characters (similar to \w+

in regex), and :[x] matching anything between delimiters

(e.g., [],(),{}). Comby also supports a small rule language

to add additional constraints, like types or regular expression

matches, on the template variables. Comby’s website [24] pro-

vides the full syntax reference. Although language agnostic,

Comby is still language aware, and can deal with comments and

other language-specific constructs. Its rules are also close to

the underlying source, and thus typically easier to read than,

e.g., transformations over abstract syntax trees.

The rest of this section describes rule inference.

A. Rule Inference

Given a set of code examples, MELT infers a set of Comby

rules that can be used to automatically migrate APIs in client

code. First, MELT parses the code files corresponding to each

code diff into an abstract syntax tree (AST), identifying the

nodes corresponding to the change before and after. MELT

then uses a variation of InferRules’s algorithm [35] (adapted

to Python) that always returns a single rule, and never abstracts

away class names, method names, and keyword arguments.

To illustrate, consider the code change in Figure 7, where

a library maintainer transforms a keyword argument into a

function call. The smallest unit MELT considers for a Comby

rule is a source code line. Given the two assignment nodes

corresponding to the change, rule inference then abstracts

away child nodes with template variables. When a construct

has the same character representation, MELT uses the same

template variable. For the example, MELT abstracts the left-

hand side and right-hand side of both assignments, yielding:

:[[a]] = :[b], and :[[a]] = :[c].

Notice that the template variable for the target of both

assignments is the same, :[[a]], because their source rep-

resentation is the same. However, MELT cannot match the

right-hand side of the assignments (:[[b]], and :[[c]]). It,

therefore further decomposes the AST nodes’ children:
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:[[a]] =
:[[i]].read_csv(
[[d]],
compression=:[e],
encoding=:[f], −→
index_col=:[[g]],
squeeze=:[[h]])

:[[a]] =
:[[i]].read_csv(
:[[d]],
compression=:[e],
encoding=:[f],
index_col=:[[g]])

squeeze ()

MELT never abstracts away class names, function names,

and keyword arguments, as preserving these details is crucial

for API migration. Additionally, MELT consistently yields

a single, all-encompassing rule. In this case, MELT can

match every template variable in the match template with

a corresponding node in the rewrite template except :[[h]].

Consequently, it attempts to further decompose the nodes,

but still fails to match :[[h]], ultimately reverting it and

generating the final rule:

:[[a]] =
:[[i]].read_csv(
[[d]],
compression=:[e],
encoding=:[f], −→
index_col=:[[g]],
squeeze=True)

where :[[h]].type == int ,
:[[i]].type == pandas

:[[a]] =
:[[i]].read_csv(
:[[d]],
compression=:[e],
encoding=:[f],
index_col=:[[g]])

squeeze ()

After inferring a rule, MELT incorporates type guards.

The goal is to constrain each template hole to its respective

observed type. This step is crucial in preventing the mis-

application of rules for common API names (e.g., match-

ing List.append when the rule targets DataFrame.append).

In contrast to previous rule synthesis approaches [35], [37],

MELT directly incorporates type constraints into Comby’s rule

language. This integration is possible because we extend Comby

to support Language Server Protocol (LSP) type inference.

MELT uses the Jedi [38] type inference language server,

making it available for client usage.

B. Rule Filtering

Occasionally, MELT infers spurious rules (e.g., rules that

contain variables in the rewrite template that might not be in

scope). First, MELT discards duplicate rules within the same

pull request (post generalization, as well). A rule is considered

a duplicate if all of the match, rewrite template and template

variable constraints are the same. MELT then further filters by:

1) API Keywords: MELT discards transformation rules that

do not contain the name of any affected APIs. This can occur

when a developer modifies the surrounding context of a code

block, for example, by wrapping a statement in a try-catch

block (e.g., :[x] −→ try:\n:[x]). These rules are considered

spurious because they can match arbitrary code and are not

specific to API migration.

2) Unsafe Variable and Private Namespaces: MELT dis-

cards rules where a rewrite template uses either variables

from private namespaces (indicated by calls with underscores,

Python’s convention for private attributes/functions/names-

paces), or variables not present in the match template. This

ensures that the rules do not rely on private or internal

functionality that is not accessible to client code.

C. Generalizing Rules

Rules inferred from single code examples may be too

specific, as demonstrated in our rule for the squeeze exam-

ple so far. This change is specific to a particular argument

combination. However, the read_csv function has numerous

optional arguments, and the rule should therefore be versatile.

Moreover, it can only be applied to assignments, even though

the migration applies to other contexts.

Therefore, our approach generalizes rules for broader ap-

plicability by abstracting irrelevant context and generalizing

arguments. Algorithm 2 overviews the process. MELT obtains

AST nodes corresponding to the match and rewrite templates

(lines 1-2), and isolates and eliminates all constructs unre-

lated to the actual code transformation (line 3). Specifically,

REMOVECOMMONCONTEXT unwraps return statements, re-

moves targets on assignments (when possible), and unwraps

conditionals, asserts, and other statements, provided they are

identical in both the match and rewrite templates. If there

are multiple ways to unwrap a statement (e.g., the rule is

comprised of two assignments statements), MELT returns the

first possible unwrapping.

Next, API call arguments are generalized wherever possible.

MELT uses matchings obtained from the Hungarian algorithm

during the rule inference process (further explained in [35]) to

find matchings between call nodes. MELT examines matching

call nodes and generalizes common arguments (line 5). The

GENERALIZEARGUMENTS function operates by examining

pairs of arguments and keyword arguments. If there are

multiple consecutive arguments between the match and rewrite

templates, we replace the arguments with a generic template

variable :[args]. Once the arguments of the call pair have

been generalized, MELT replaces it in the original templates

(lines 6-7). MELT also ensures that keyword arguments always

appear at the end of the rewrite template. For example,

when a developer turns a positional argument into a keyword

argument, the rewrite template moves the positional argument

to the position of the last keyword argument. For our running

example, the final rule is:

:[[i]].read_csv(
:[args], −→
squeeze=True)

where :[[i]].type == pandas

:[[i]].read_csv(
:[args])

squeeze ()

. . . where MELT removed the assignment target and abstracted

irrelevant arguments.

Generalization is crucial to ensuring broader rule ap-

plicability. However, over-generalization does occur, espe-

cially when type information is lost. As a result, gener-

alized rules may need extra validation. However, MELT

does allow users to generate rule variations to explore
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Algorithm 2 GENERALIZE(r)

Input: r: a rewrite rule

Output: generalized rewrite rule

1: n1 ← GETBEFORENODE(r)
2: n2 ← GETAFTERNODE(r)
3: n1, n2 ← REMOVECOMMONCONTEXT(n1, n2)
4: for (c1, c2) ∈ GETCALLPAIRS(n1, n2) do
5: c1

′, c2′ ← GENERALIZEARGUMENTS(c1, c2)
6: n1 ← REPLACENODE(n1, c1, c

′
1)

7: n2 ← REPLACENODE(n2, c2, c
′
2)

8: end for
9: return CREATERULE(n1, n2)

alternative generalizations, such as a rule with a match

template :[[i]].read_csv(squeeze=True) or another with

more arguments after squeeze :[[i]].read_csv(:[args0],

squeeze=True, :[args1]). We leave a detailed investigation of

these concerns to future work.

V. EVALUATION

We answer the following research questions:

RQ1. How effectively can MELT generate transformation

rules from code examples in pull requests?

RQ2. How do code examples generated automatically com-

plement code examples in pull requests?

RQ3. What is the impact of rule generalizability?

RQ4. Are the rules effective for updating client code?

A. Experimental Setup

1) Implementation: Although our approach is largely

language-agnostic, we implement it for Python libraries be-

cause: (1) Python is one of the most popular programming

languages [39], and (2) there exists a gap in migration tools

for Python [20]. We implemented rule inference using the

Python abstract syntax tree (AST) module. InferRules [35]

was originally implemented for Java AST; we brought native

implementation to Python. We also perform rule generalization

at the Python AST level. For code generation, we used the

state-of-the-art GPT-4 [32]. We extended Comby to support

Language Server Protocol (LSP)-based type inference over

match templates [40] with Jedi [38], a state-of-the-art static

analysis tool. MELT’s source code, data, and logs used for the

evaluation are available at Zenodo [34].

2) Methodology: We evaluated MELT using four of the

most popular Python data science libraries: numpy, scipy,

sklearn, and pandas. We collected a total of 722 pull requests

for pandas, 141 for sklearn, 186 for numpy, and 130 for

scipy using the GitHub QL API and web crawlers over release

notes. We took a convenience sampling approach to find PRs

concerning API or breaking changes, or deprecation-related

PRs, moving backwards from the version of each library (as

of April 2023); this includes merged PRs intended for future

library releases, as well as those that have been released. We

collected more PRs for pandas than other libraries because it

had a higher number of pull requests, and breaking changes

TABLE II: RQ1. Left: Pull requests per library, with mined rules
and correct rules. Right: Filtered and generalized rules mined per
library, with total and correct counts.

PRs with

Library # PRs Mined Correct Mined Rules
Rules Rules Total Correct (%)

pandas 722 169 102 521 359 (68.9%)
scipy 130 21 11 33 19 (57.6%)
numpy 186 20 10 47 27 (57.4%)
sklearn 141 38 21 82 56 (68.3%)

Total 1179 248 144 683 461 (67.5%)

in pandas are particularly well documented. We then executed

MELT on each pull request.

For our manual assessment of rule correctness and rele-

vancy, two authors of this paper manually labeled a set of

rules independently. We defined a rule to be correct if (1) it

correctly reflects the change in the pull request, and (2) it is

generally applicable to client code and does not overgeneralize

(i.e., it will not produce incorrect migrations even if it matches

the correct APIs in some cases). This procedure requires ana-

lyzing the pull request discussion, changes, source code, and

documentation when necessary. The annotators discussed five

representative examples together and then individually labeled

151 unique rules, achieving an inter-rater reliability (IRR) with

a Cohen’s kappa of 0.84 (almost perfect agreement) [41]. Due

to the high agreement, the first author labeled the remaining

rules to cover all research questions.

B. RQ1: Mining Rules from Code Examples in PRs

Table II summarizes MELT’s rule inference algorithm on

1179 PRs (722 pandas, 130 scipy, 186 numpy, 141 sklearn).

MELT’s ability to extract code examples from pull requests

largely depends on the libraries’ testing practices. Nonethe-

less, a significant number of pull requests contain valuable

examples for rule extraction. Previous studies [42] found

that only 27.1% of migrations in a different set of libraries

were potentially fully automatable. MELT generates correct

migration rules for 12.2% of analyzed pull requests, indicating

room for improvement (further explored in RQ2).

Running MELT’s rule inference algorithm to the 1179 PRs

results in 5504 rules. After filtering and generalization, we

ended up with 683 rules. The right-most columns of Table

II show the number of mined rules after generalization and

filtering for each library, and their correctness based on

manual validation. On 67.5% of the cases, our mined rules

are correct and do not overgeneralize. However, on 32.5% of

the cases, MELT derived incorrect, non-generally applicable,

or over general rules. We observed three primary reasons for

incorrect rules: (1) Code change not generally applicable,

such that the rule cannot capture the context in which it

is applicable. For example, in numpy PR #9475 [43], the

np.rollaxis is deprecated in favor of np.moveaxis. Migrating

from one API to another depends on the actual content of the

variables used in the API, as it behaves differently depending
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TABLE III: RQ2. Left: Code examples generated and passing tests
per library. Middle: Pull requests with mined and correct (“Corr.”)
rules from generated examples. Right: Filtered and generalized rules
per library. Note: Limited to 50 PRs per library for budgetary reasons.

Code PRs with Mined Rules
Examples Rules Correct

Library Total # pass Total Corr. Total Prev New

pandas 285 134 25 19 45 7 30
scipy 194 68 15 13 30 4 18
numpy 222 114 21 14 46 2 31
sklearn 187 63 21 13 35 5 17

Total 888 379 82 59 156 18 96

on the variables’ content. Our rule cannot capture this, as

it only considers types, not content. (2) Overgeneralization
of rule arguments. For instance, pandas PR #21954 [44]

says “read table is deprecated. Instead, use pandas.read csv
passing sep=‘t’ if needed.”. However, one of the inferred rules

is read_table(:[args]) �→ read_csv(:[args]), because the

algorithm abstracts all arguments based on the code example.

and, (3) Unrelated changes not caught by filtering.

MELT generates 461 correct migrations rules directly

from code examples for 144 (12.2%) out of 1179 pull
requests from four popular data-science libraries.

C. RQ2: Automatically generated code examples

To evaluate the role example generation played in rule in-

ference, we sampled 50 pull requests for each library (limited

by budget). We used a template to create a prompt to ask the

model to generate both code examples and test cases/inputs for

the examples, per pull request. The prompt includes the title,

description, discussion, and code changes. We used OpenAI’s

API to prompt GPT-4, with a (default) temperature of 0.2, and

sampled the model with N = 5 in Algorithm 1.

The left side of Table III shows the number of unique

examples generated for each library and the number of ex-

amples that passed the test suite. MELT produced 248 unfil-

tered and ungeneralized rules on these examples; filtering and

generalization produced 156 unique rules. We also assessed

whether these rules could have been generated from the pull

request code directly, by checking (1) whether they were

mined in RQ1 (Section V-B), or (2) whether they could be

directly applied to their corresponding pull request (meaning

that they could have been mined in RQ1, but may have been

heuristically filtered away).

Table III summarize rule mining success using generated

examples by pull request (middle columns); the right-hand

side shows the number of rule mined. We categorized

correct rules into those that could have been mined without

new examples (prev), and those that are new with the

generated examples. Like in the previous RQ, MELT

can generate incorrect rules in some scenarios. Consider

the following example rule: :[[aah]].shift(:[aae],

fill_value=:[aaf]) −→ :[[aah]].shift(:[aae],

fill_value=pd.Timestamp(:[aaf])). 5 This rule is derived

from pandas pull request number #49362 [45]. The release

notes for the PR state: “Enforced disallowing passing
an integer fill value to DataFrame.shift and Series.shift
with datetime64, timedelta64, or period dtypes”. This

transformation is only valid if the series has a datetime64

dtype object, a condition not captured by the rule. While the

transformation correctly preserves behavior in this instance, it

is incorrect for general application. More diverse tests for the

code example could likely increase coverage and filter more

incorrect rules.

MELT generated 114 correct rules out of the 156

generated rules (73.1%) from auto-generated transition
examples. 96 (61.5%) of those rules would not have
been generated otherwise.

D. RQ3: Generalizability

Of the 156 rules we manually validated in RQ2, 41 had

generalized arguments, and only 9 (22%) were incorrect.

To further evaluate the impact of generalizability with an

ablation study, by disabling the generalization procedure.

We selected 15 rules that had been generalized, along with

their non-generalized counterparts. Using Sourcegraph’s code

search [46],6 we searched for repositories containing a given

keyword in the rule (e.g., for readcsv(..., squeeze=True), we

searched for squeeze=True). We then cloned up to 50 random

repositories for each rule, and ran the generalized and non-

generalized rules on these repositories, counting matches.

Table IV shows matches for original and generalized rules,

showing that generalization significantly improves rules appli-

cability. For instance, the number of matches for the set_index

case increased from 2 to 370 (185x) with generalization. Gen-

eralization is important because it abstracts context unrelated

to API changes. As we focus on API migration in Python,

where there can be many argument combinations (e.g., APIs

with as many as 10 keyword arguments), generalization helps

capture the essence of the change by abstracting arguments.

Some rules had 0 matches because Comby was unable to infer

types (Comby does not apply rules when it cannot infer types

of a template match), or the query was poorly constructed.

Generalization led to a 9.07x increase in rule matches,

boosting potential rule applications from 162 to 1469 in

our sample. This demonstrates the significant impact of
generalization on rule applicability.

E. RQ4: Updating client code

To evaluate the effectiveness of our approach to updating

developer code, we migrated outdated library API usage in

developer projects found on GitHub for the sklearn, pandas,

and scipy libraries. Collecting and running client projects

5Template variables are omitted for brevity.
6Note SourceGraph only indexes repositories with at least two stars.
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TABLE IV: RQ3. Comparison of Non-General and Generalized Rules

Library Original Rule Generalized Rule

Match Template Matches Match Template Matches

pandas

:[[x]].set_index(:[a], drop=:[[b]], inplace=True) 2 :[[x]].set_index(:[args], inplace=True) 370

:[[x]].read_csv(:[[a]], compression=:[[b]],
encoding=:[[c]], index_col=:[d], squeeze=True)

0 :[[x]].read_csv(:[args], squeeze=True) 21

:[[aai]].apply(:[a], axis=:[[b]], reduce=True) 3 :[[aai]].apply(:[args], reduce=True) 4

scipy

jaccard_similarity_score(:[[a]], :[[b]]) 94 jaccard_similarity_score(:[args]) 226

:[[x]].filters.gaussian_filter(:[a],
:[b], mode=:[[c]])

0 :[[x]].filters.gaussian_filter(:[args]) 86

:[[x]].query(:[[a]], :[[b]], n_jobs=:[c]) 0 :[[x]].query(:[args], n_jobs=:[y]) 0

:[[x]].hanning(:[[a]], :[[b]]) 0 :[[x]].hanning(:[args]) 0

numpy

:[[x]].alltrue(:[a], axis=:[b]) 7 :[[x]].alltrue(:[args]) 208

:[[x]].histogram(:[[a]], bins=:[b], range=:[c],
normed=:[y])

2 :[[x]].histogram(:[args], normed=:[y]) 66

:[[x]].complex(:[[a]], :[[b]]) 17 :[[x]].complex(:[args]) 20

sklearn

BaggingClassifier(base_estimator=:[[a]],
n_estimators=:[[b]], random_state=:[[c]])

26 BaggingClassifier(base_estimator=:[x], :[args]) 220

BaggingRegressor(base_estimator=:[[a]],
n_estimators=:[[b]], random_state=:[[c]])

7 BaggingRegressor(base_estimator=:[x], :[args]) 116

KMeans(n_clusters=:[a], init=:[[b]],
n_init=:[[c]], algorithm=’full’)

0 KMeans(:[args], algorithm=’full’) 38

AgglomerativeClustering(n_clusters=:[a],
linkage=:[b], affinity=:[c])

4 AgglomerativeClustering(:[args], affinity=:[c]) 28

OneHotEncoder(sparse=:[[aac]],
categories=:[[aan]], drop=:[[aaz]])

0 OneHotEncoder(sparse=:[x], :[args]) 66

TABLE V: RQ4. Effects of rule application on developer projects.

Library Total
Projects

Affected
Projects

Unique
Rules

Rule
Applications

Additional
Warnings

Resolved
Warnings

Additional
Passing Tests

Additional
Failures

Resolved
Failures

sklearn 20 10 6 27 9 598 2 1 1
pandas 20 10 4 23 0 44 7 81 7
scipy 20 6 5 23 0 266 0 1 0

Total 60 26 15 73 9 908 9 83 8

requires significant manual effort: many projects do not specify

dependencies or provide tests. We therefore did not evaluate

numpy API usage, but we can expect similar results.

We found client projects by searching GitHub for public

repositories that used outdated versions of each library, and

included code that matched to at least one of the match

templates of an inferred rule from RQs 1 and 2. We applied a

total of 15 unique rules across the three libraries. We provide

detail on specific rules and projects in Zenodo [34]. For each

library, we identified 20 client projects that used outdated

versions, and between one and three rules applied. We cloned

each project, updated its library dependencies to a version with

the breaking change, installed necessary dependencies, and ran

all tests to note passing tests, failures, errors, and warnings.

We then used Comby to automatically update the outdated API

usage, and reran the tests to compare results post-migration.

We did this separately for each applicable rule.

Table V summarizes results. Total Projects refers to the

total number of projects to which we applied rules and tested.

Affected Projects refers to the number of evaluated projects

that had a change in the tests after rule application from new

or resolved warnings, passed tests, or failures. Not all of the

projects had tests affected by rule application, either because

test coverage was incomplete or because persistent failing tests

in developer projects obscured the effect of rule application.

For sklearn, slightly less than half the developer project

tests were affected by rule application. Only two of the projects

showed a negative impact of rule application, where one

project had an additional failing test and another project had

nine new warnings. The sklearn rules were applied without

type information, which is one potential cause for the negative

impact. The other affected projects had warnings resolved,

ranging from 1 to 563 warnings resolved for a single project.

One project had additional passing tests.

For pandas, rule application affected half of client projects.

While there were 81 additional failures from pandas rules,

1524

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on May 01,2024 at 13:28:57 UTC from IEEE Xplore.  Restrictions apply. 



they were isolated to four projects and a single rule. These

new failures occurred because of a lack of type informa-

tion, meaning one rule was erroneously applied to API calls

unrelated to the pandas library. In other projects, the same

rule was applied correctly, even without type information, and

successfully resolved warnings. The other three unique pandas

rules were applied with type information. No pandas rules

introduced new warnings.

For scipy, rules were also applied absent type information,

but only one application introduced an error. All six affected

scipy projects had warnings resolved by rule application, and

none of the scipy rule applications caused additional warnings.

Of the 60 evaluation repositories, 34 had no change in the

tests or warnings. However, this does not indicate that rule

transformation was incorrect or unnecessary: most projects

had failing tests and errors unrelated to API usage, which can

obscure the effect of rule application. Overall, the resolved

warnings and failures demonstrate MELT’s potential to help

developers more easily maintain large projects.

VI. DISCUSSION

In this section, we address the main limitations of our

method and possible future work.

A. Limitations and threats

Rule correctness. We used manual validation to assess rule

correctness, with a process that entailed high IRR kappa in-

dicating agreement. One approach for further validation could

involve upgrading client projects to newer library versions

and applying the rules on projects using these libraries. In

RQ4, we use this method to demonstrate that some rules are

indeed correct. However, this process is challenging. MELT

does not mine rules for all breaking changes in a given release,

so upgrading client projects may break multiple aspects in

ways automatic find-and-replace rules cannot address [42].

However, automating a large part of migration in ways that

entail minimal additional technology or effort on the part of

the client developer holds promise for reducing the challenge

of upgrading library dependencies. Our rules could also po-

tentially be validated using differential testing techniques or

by requesting more tests from the code generation model.

Code generation model. Our approach relies on a code

generation model to generate examples when none are avail-

able. We selected GPT-4, a state-of-the-art model trained on

data before September 2021. We successfully evaluated on

pull requests opened after September 2021, demonstrating

the risk of data leakage in these experiments is low. The

model, however, is paid and not open-source. As AI research

advances, we anticipate better models being made public.

We opt for a model-based code generation approach over

generating Comby rules directly because rules can be validated

with code examples (if the code does not pass, we discard

the example). Additionally, the model is not fine-tuned and

has limited exposure to Comby, and is likely to work better

on commonly-used languages like Python. For less popular

APIs, however, fine-tuned versions of the model on library

code might be necessary.

Generalization. Our generalization procedure removes con-

text and arguments that appear unrelated to the change, only

considering diffs. Removing too much context and type infor-

mation may result in spurious rules. Conversely, insufficient

generalization can make the rule too specific. MELT can return

both rules to the user, allowing them to decide what to keep.

Currently, developers must manually validate rules to ensure

they make sense. To facilitate this, we developed a CI solution

on GitHub for integrating our tool. Rules can be validated

and modified, if necessary, by whoever merges the PR, or

automatically validated, as previously discussed.

B. Comparison against prior work

Few API migration tools target Python, challenging direct

comparison to prior work. MELT adapts its inference algo-

rithm from InferRules [35], designed for type migration in

Java. Consequently, MELT without generalization and filtering

serves as a baseline equivalent to InferRules. The most closely

related approach, PyEvolve [37], builds on InferRules using

Comby as an intermediate representation. PyEvolve focuses

on general refactoring, and adapts rules to different control

variants, requiring more complex analysis, and client code

analysis. This is in contrast to MELT’s lightweight approach,

which aims to minimize overhead on client developers. Since

most of our rules are 1:1 and 1:n transformations, adapting

rules for control flow variants is less relevant. Overall, while

PyEvolve is more powerful in the types of rules it can infer,

fundamentally it serves a different goal as compared to MELT.

Our evaluation differs from closely-related prior work [12],

[14] in two ways. First, our manual validation process is able

to consider more information in the form of the PR and library

documentation. That is, rather than looking at rules in isolation

or limiting attention to syntactic validity, we can consider

whether the change actually reflects PR intent. Second, we

provide an end-to-end evaluation of automatically inferred

rules on a number of client code repositories, complementing

manual rule validation.

As we discuss in Section VII, most prior approaches for

automatic API migration (or code evolution generally) mine

migration examples from client projects or their source control

histories. MELT relies solely on the changed library, looking

at internal code changes to inform rule mining. This allows

MELT to apply earlier in the library update process. However,

libraries do not always include sufficient changed code exam-

ples to inform migration, which is why MELT also prompts an

LLM to generate extra examples, along with tests to validate

those examples. Other approaches may also benefit from using

LLMs this way, particularly those whose use cases entail fewer

available examples, like A3 [16] (focusing on Android API

migration), or APIFix [14] (evaluated on changes to library

code, similar to MELT). APIFix in particular could likely bene-

fit from the LLM-generated examples and tests, because it uses

edit examples in its program synthesis algorithm. Other tools
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are evaluated across many more example changes to client

code, like Meditor [12]. These approaches may not require

new examples, but leveraging LLMs may allow them to apply

earlier in the update process, or in scenarios where migration

examples are scarce. Indeed, as models with larger context

windows become available (e.g., CLAUDE 100K token con-

text [47]), it becomes possible to include more comprehensive

data in prompts, such as full API documentation. This suggests

a promising avenue for generating higher-quality, context-rich

examples for rule mining, particularly when extant migration

examples are scarce.

VII. RELATED WORK

Empirical studies on API evolution. API evolution has long

been a challenging software engineering concern without a

definitive solution. Developers often lag in updating their

software to the latest APIs, leading to compatibility issues

and hindering maintenance [19]. Recent work identifies a

significant need for more support for API evolution tools in

languages other than Java, particularly Python [20]. MELT

aims to address this gap. Moreover, Dilhara et al. [48] further

reinforce the need for migration tools for Python, finding that

Python data library clients tend to need to update dependencies

frequently and face significant challenges in doing so.

A study of API migration in four popular Java libraries

found that only 27.1% of these migrations were fully au-

tomatable [42]. This suggests that achieving 100% safe and

automated migration rules is unlikely, as some transforma-

tions are complex and need more context than rule-based

approaches can provide. MELT’s imperfect accuracy aligns

with these findings, as some rules are incorrect simply due

to the difficulty in capturing them with purely syntax-driven

transformations. However, MELT’s approach can provide semi-

automated support for migration, easing the overall burden.

Meanwhile, refactoring tools that require developers to use

complex domain-specific languages are often difficult to use

and, consequently, often poorly-adopted [49]. This observation

emphasizes the need to develop user-friendly and ergonomic

API migration tools and techniques that seamlessly integrate

into developers’ workflows, as MELT aims to do.

Library evolution. Automated API migration research has

primarily focused on mining client repositories, usually tar-

geting object-oriented languages (namely Java and C#). For

example, A3 [16] and Meditor [12] mine client repositories

for examples to create rules, which are then customized

to new clients. APIFix [14] mines transition examples from

both previously-migrated and new client repositories and uses

Refazer’s [50] engine to learn rules. Refazer’s transformations

are expressed as AST edits, which are more difficult to un-

derstand [51]. Unlike previous approaches, MELT emphasizes

simplicity via lightweight find-and-replace transformations.

APIMigrator [15] and AppEvolve [17] also mine client repos-

itories for transition examples and apply them directly to

clients. Both tools use differential testing to validate edits on

clients. MELT focuses on generating rules rather than updating

client code directly, however, it could similarly benefit from

incorporating differential testing [52] to validate inferred rules.
Approaches like Semdiff [53] recommends API changes to

developers by presenting a ranking of potential replacements.

Code Refactoring. Catchup! [54] records refactorings made

by library developers during development and replaces them

in client code. LASE [55] and SYEDIT [56] mine code examples

for systematic edits, generating edit scripts at the AST level

rather than using find-and-replace rules. InferRules [35], [57]

inspired our rule inference algorithm. However, InferRules

primarily targets type migration and extensively mines client

repositories for refactoring examples.
PyEvolve [37], developed concurrently with this work, also

uses InferRules’s algorithm to infer Comby rules from code

changes. However, its purpose is different, as we discussed in

detail in Section VI-B. Most migrations are either 1:1 (47.2%)

or 1:n (48.1%) [42], and control-flow awareness is not neces-

sary for API evolution. MELT focuses on rule generalization

instead. This reduces analysis overhead, especially for large

code bases, as only Comby needs to be run.
SOAR [13] uses program synthesis to refactor client code

rather than generate find-and-replace rules, aiming to support

migration between libraries. Unlike MELT, SOAR refactors

client code as a blackbox, which can be less interpretable. It

can handle more complex migrations, but is commensurately

less performant. To the best of our knowledge, PyEvolve and

SOAR are the only two tools besides MELT that can infer and

apply refactorings for Python code.

VIII. CONCLUSION

Selecting and maintaining APIs is critical yet challenging in

software development. Developers may have to manually up-

date APIs due to evolving libraries, which is time-consuming

and error-prone process. We present MELT, which assists

developers by generating lightweight API Migration rules in

Comby. Unlike previous approaches, MELT mines rules directly

from library pull requests instead of client projects. This

approach allows rule inference to be integrated directly into

the library workflow, eliminating the need to wait for clients

to migrate their code. Furthermore, MELT rules are purely

syntax-driven, and require no additional tooling on client side

(besides Comby). We evaluated MELT on pull requests from

four popular libraries: pandas, scipy, numpy, and sklearn. We

assessed rule accuracy by examining the pull request descrip-

tions, discussions, and more. We discovered 461 accurate rules

from code examples in pull requests and 114 rules from auto-

generated code examples. To show practical applicability, we

applied the rules to client projects and ran their tests, proving

their effectiveness in real-world situations.
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