
Semantic Crash Bucketing
Rijnard van Tonder

School of Computer Science

Carnegie Mellon University

USA

rvt@cs.cmu.edu

John Kotheimer

Heinz College

Carnegie Mellon University

USA

john.kotheimer@alumni.cmu.edu

Claire Le Goues

School of Computer Science

Carnegie Mellon University

USA

clegoues@cs.cmu.edu

ABSTRACT
Precise crash triage is important for automated dynamic testing

tools, like fuzzers. At scale, fuzzers produce millions of crashing

inputs. Fuzzers use heuristics, like stack hashes, to cut down on

duplicate bug reports. These heuristics are fast, but often imprecise:

even after deduplication, hundreds of uniquely reported crashes

can still correspond to the same bug. Remaining crashes must be

inspected manually, incurring considerable effort. In this paper we

present Semantic Crash Bucketing, a generic method for precise

crash bucketing using program transformation. Semantic Crash

Bucketing maps crashing inputs to unique bugs as a function of

changing a program (i.e., a semantic delta). We observe that a real

bug fix precisely identifies crashes belonging to the same bug. Our

insight is to approximate real bug fixes with lightweight program

transformation to obtain the same level of precision. Our approach

uses (a) patch templates and (b) semantic feedback from the pro-

gram to automatically generate and apply approximate fixes for

general bug classes. Our evaluation shows that approximate fixes

are competitive with using true fixes for crash bucketing, and sig-

nificantly outperforms built-in deduplication techniques for three

state of the art fuzzers.

CCS CONCEPTS
• Software and its engineering → Error handling and recov-
ery; Maintaining software; Software defect analysis; • Secu-
rity and privacy → Software security engineering;

KEYWORDS
Crash Bucketing, Fuzzing, Bug Triage, Program Transformation,

Automated Bug Fixing

ACM Reference Format:
Rijnard van Tonder, John Kotheimer, and Claire Le Goues. 2018. Semantic

Crash Bucketing. In Proceedings of the 2018 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE ’18), September 3–7,
2018, Montpellier, France. ACM, New York, NY, USA, 11 pages. https://doi.

org/10.1145/3238147.3238200

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00

https://doi.org/10.1145/3238147.3238200

1 INTRODUCTION
The advent of large scale fuzzing services, such as Google’s OSS-

Fuzz [1, 45] and Microsoft’s fuzzing service [9], attest to the effec-

tiveness of automatic bug finding tools. When operating at scale,

accurately identifying unique bugs is critical for (a) reducing time-

consuming manual debugging efforts [14, 41], (b) characterizing

the effectiveness of automated bug-finding tools [12, 14, 37, 42, 48],

and (c) ranking interesting crashing test cases [14]. However, one

outstanding challenge in effectively deploying automated fuzzing

techniques is accurately identifying unique bugs during crash triage.

Fuzzers often generate thousands of crashing inputs that ultimately

correspond to the same bug [14], and the sheer number of crashing

inputs preclude manual inspection. This is a hard problem, and an

area of active research [17].

Automated crash triage techniques seek to approximately bucket
multiple crashing (but ultimately equivalent) inputs [14, 17, 37, 41],

to reduce the number of redundant bug reports an engineer must

inspect by hand. At a high level, automated testing tools like fuzzers

and symbolic executors typically use tool-specific, heuristic buck-

eting strategies. Both research and industry standard triage tech-

niques have known limitations [17, 42]. Techniques may assume

“best-effort” hardcoded values (e.g., the number of calls to con-

sider in a call stack [2]) or require tool-specific instrumentation for

feedback-driven approaches [3]. The varied sensitivity of such ad

hoc techniques result in imprecise bug identification that can fail

in two ways. Overapproximation occurs when multiple crashing

tests caused by a single bug incorrectly bucket to more than one

unique bug (i.e., duplicate bug reports). Underapproximation occurs

when crashing tests due to multiple unique bugs are put in the same

bucket [41, 48] (i.e., missed unique bugs).

Stack hash [37, 48] and branch sequence [7] techniques used in

state-of-the-practice fuzzers [2, 3, 7] can suffer from both over- and

underapproximation [41, 48]. Such techniques seek to determine

bug uniqueness as a function of, e.g., crashing input [48], program

traces [7, 17], program crash state [3], or a combination of these [14].

Recent (and more sophisticated) research advances propose to more

precisely classify unique bugs using symbolic analysis [41], machine

learning on crashing inputs [14], and backward taint analysis on

program traces [17]. While such approaches promise more accurate

bucketing by considering semantic program behavior (e.g., [17,

41]), their accuracy depends on sensitivity to a general semantic

trait (e.g., symbolic branch uniqueness) and can still misbucket

bugs. Built-in or hardcoded techniques further struggle to integrate

specialist knowledge that can produce more accurate output for

classes of bugs.
1

1
https://twitter.com/azonenberg/status/966738179486134272

612

https://doi.org/10.1145/3238147.3238200
https://doi.org/10.1145/3238147.3238200
https://doi.org/10.1145/3238147.3238200
https://twitter.com/azonenberg/status/966738179486134272


ASE ’18, September 3–7, 2018, Montpellier, France Rijnard van Tonder, John Kotheimer, and Claire Le Goues

We present a radically new approach to identifying unique bugs

in the context of fuzzing: by modifying the program itself. Our

insight is that bugs can be characterized by a semantic transfor-

mation on the program under test. For example, patching one of

two buffer overflows in a single execution can distinguish crashes

unique only to the second. Further, a fix can stop the same logical

bug from manifesting on multiple unique execution paths.

Our insight draws on the fact that fixing the program offers a

precise way to associate crashing inputs with a unique bug, since

correct fixes should neutralize all crash-inducing inputs associated

with the bug in question.

We introduce Semantic Crash Bucketing, which maps crashing

inputs to bugs as a function of change (delta) in program semantics,

where the delta approximates fixing the root cause of the bug. In

general, root cause analysis is hard [27, 39], and automatically

fixing bugs is an open problem [30]. However, existing work in

automated program repair (APR) does demonstrate that programs

can profitably be transformed to automatically improve quality [29,

34, 36]. The motivation behind our approach is that changing a

program with approximate fixes can accurately and automatically

constrain crashing behavior in a way that mimics real program

fixes to detect unique bugs in fuzzer output.

Semantic Crash Bucketing contrasts with the usual sense of

seeking program fixes with respect to a correctness oracle (such

as tests [29, 34]). However, although the objective of Semantic

Crash Bucketing is different from APR, it can similarly suffer from

program transformations that overfit to the success criterion. For

example, suppose a program contains more than one unique bug,

each with independent fixes. Inserting exit(0); at the beginning

of a program will satisfy the criterion of neutralizing all crashes,

but will associate (and underapproximate) all unique bugs with a

single fix. To be effective, program transformations must therefore

have constrained semantic effects to precisely identify unique bugs

under Semantic Crash Bucketing.

We propose a rule-based approach using fix templates to con-

strain the semantic transformations for crash bucketing. Our ob-

servation is that common bugs typically detected by fuzzers (e.g.,

buffer and integer overflows, null dereferences, etc.) have semantic

properties that are amenable to a rule-based application of gen-

eral fix templates (as found in analog APR work, e.g., [16, 26, 46]).

At a high level, rule-based application of fix templates can inte-

grate specialist knowledge of bug semantics into the triage process

to produce more precise output. We demonstrate Semantic Crash

Bucketing for buffer overflows and null dereferences on real-world

bugs in the CVE database [4]. Buffer overflows and null derefer-

ence vulnerabilities account for some of the most common software

security weaknesses [31] and are frequently discovered through

fuzzing [7, 42, 45]. Our contributions are as follows:

• Semantic Crash Bucketing, a novel technique to auto-

matically identify unique bugs as a function of changing

a program’s semantics. Semantic Crash Bucketing groups

crashing inputs by applying program transformations to the

program under test. We use Semantic Crash Bucketing to

identify imprecise crash reporting in fuzzers, and to compare

the effectiveness of developer-written fixes and approximate

fixes.

• Approximate fixes. We present an automated procedure

using bug-fixing patch templates and rule-based application

of patches to approximate correct fixes. In general, correctly

and automatically fixing a program is hard. The key insight

is that the effectiveness of approximate fixes is competitive

with using correct fixes for identifying unique bugs. We in-

stantiate Semantic Crash Bucketing with approximate fixes

for real-world bugs commonly found by fuzzers: buffer over-

flows and null dereferences and demonstrate effectiveness.

• Empirical evaluation. We comparatively evaluate Seman-

tic Crash Bucketing using developer-written fixes and ap-

proximate fixes with deduplication techniques of three state-

of-the-art fuzzers (AFL-Fuzz [7], CERT BFF [2], and Hong-

gfuzz [3]). We show with Semantic Crash Bucketing that

approximate fixes associate crashing inputs precisely (i.e.,

no under- or overapproximation) for 19 out of 21 bugs in

6 projects compared to ground truth fixes. We also show

that bucketing with approximate fixes is more precise than

built-in deduplication of all three fuzzers. Our results are

available online.
2

2 MOTIVATING EXAMPLE
AFL-Fuzz is known to find null dereference and memory corruption

bugs in even well-tested software [5]. Consider one such bug found

in SQLite: a null dereference that was later fixed by the patch in List-

ing 1a. The sqlite3WalkSelect function (Line 7) walks the expression

tree of a SQL select statement. The return value of sqlite3WalkSelect

can indicate an error in a SELECT ... FROM ... statement, but the re-

turn value is not checked. This missing check can lead to a null

dereference downstream during execution due to an invalid FROM

clause. The fixing commit message says:�
Make sure errors from the FROM clause of a SELECT cause
analysis to abort and unwind the stack before those errors
have a chance to mischief in the "*" column-name wildcard
expander.� �
The developer thus checks the return value of sqlite3WalkSelect

and aborts, avoiding any null dereferences downstream (Line 8,

Figure 1a).

Current fuzzers and symbolic executors can find many different

crashing inputs that trigger bugs like these. For example, slight

modifications in a crash-inducing SELECT...FROM... input could fol-

low a different sequence of calls or branches, but still trigger the

same bug. Existing techniques use generic heuristics to identify

unique crashes from a set of many generated inputs. Call stack

hashes [2, 3, 12, 20, 37] are predominant; instrumentation-based

fuzzers may use program execution paths sensitive to branch se-

quences [3]. These heuristics are fast and moderately effective, but

remain imprecise, because they are sensitive to inputs that vary

program execution in a way that is unrelated to the actual bug. De-

pending on the heuristic and inputs, fuzzers report many duplicate

crashes as unique.

Our approach defines bug uniqueness in terms of program trans-
formation. The motivation is that fixing a bug (as the developer did

in Figure 1a) ideally “catches” all crashing inputs related to the bug,

2
https://github.com/squaresLab/SemanticCrashBucketing

613

https://github.com/squaresLab/SemanticCrashBucketing


Semantic Crash Bucketing ASE ’18, September 3–7, 2018, Montpellier, France

1 --- a/src/select.c

2 +++ b/src/select.c

3 @@ -4153,7 +4153,7 @@ static int selectExpander(Walker

*pWalker, Select *p){

4 /* A sub-query in the FROM clause of a SELECT */

5 assert( pSel!=0 );

6 assert( pFrom->pTab==0 );

7 - sqlite3WalkSelect(pWalker, pSel);
8 + if( sqlite3WalkSelect(pWalker, pSel) ) return

WRC_Abort;
9 pFrom->pTab = pTab = sqlite3DbMallocZero(db,

sizeof(Table));

10 if( pTab==0 ) return WRC_Abort;

(a) SQLite: a developer fix that avoids a null dereference.

1 --- a/src/resolve.c

2 +++ b/src/resolve.c

3 @@ -164,6 +164,9 @@ int sqlite3MatchSpanName(const char *

zSpan, const char *zCol, const char *zTab, const char

*zDb){

4 int n;

5

6 + if(zSpan == NULL) {
7 + exit(101);
8 + }
9 for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){}

10 if( zDb && (sqlite3StrNICmp(zSpan, zDb, n)!=0 || zDb[n

]!=0) ){

11 return 0;

(b) SQLite: autogenerated approximate fix for the null dereference.

Figure 1: Two fixes for a null dereference in SQLite 3.8.9. The actual fix is shown on the left (commit 10c478e). Our approach
automatically generates the patch on the right.

irrespective of call stacks or other program execution paths.
3
The

challenge is that finding true fixes is hard. Automated root cause

analysis is difficult and expensive [27, 33], especially for bugs like

this one, that requires deep reasoning.

Our primary insight is that simpler approximate fixes can substi-

tute for real fixes to precisely bucket crashing inputs. For example,

Figure 1b presents an autogenerated approximate fix for the same

SQLite null dereference bug. Semantically, it safely aborts the pro-

gram if zSpan are null. It turns out that the SQLite bug leads directly

to zSpan being null at this later program point (i.e., when the input

statement contains a * expander described in the commit message).

The approximate patch precisely “catches” similar crashing inputs

like the actual patch.

Our approach uses syntactic templates and configurable “seman-

tic cues” to generate such patches. Semantic cues act as predicates

for applying patch templates. A concrete example is “Checkwhether

any dereferenced variables at program point p is null. If so, return

the variable name”. A patch template can then be instantiated with

the specific variable. In general, templates and rules for patch gen-

eration and application are specified just once per bug class (e.g.,

null dereferences and overflows.). We describe the procedure fully

in Section 4, but provide a brief summary here for null derefer-

ences. The patch template for null dereferences checks whether a

variable is null, and safely aborts the program if so. This template

contains a “hole” for the variable to check, and must be instantiated

with a concrete variable. We configure the procedure to check for

a semantic cue: whether variables are null at the point of crash

using a debugger environment. In this case, our procedure finds

that zSpan[n] could be a problematic dereference, and dynamically

checks whether zSpan is null when the program crashes. Variable

zSpan is found to indeed be null, generating the patch in Figure 1b.

The patch is validated to confirm that the modified program no

longer crashes for the input. That is, the autogenerated patch ap-

proximates the real fix effectively because it discovers and fixes the

related null dereference triggered downstream during execution

even though it does not deeply address the root cause.

3
And, under correctness assumption of the fix, any other crashing input is associated

with a different unique bug.

In essence, applying lightweight program transformation re-

duces noise compared to typical deduplication heuristics by focus-

ing on the semantic properties of the bug. At the expense of slight

up front cost per bug class, our approach provides a configurable

mechanism that is sensitive to the semantic property of the bug to

more precisely identify uniqueness.

A configurable approach is important: bugs exhibit different

semantic traits to which program transformation must be sensitive.

For example, null dereferences cause an immediate program crash

which allows us to identify possible causes at the point of crash.

On the other hand, buffer overflows typically only cause a crash

once corrupted memory is accessed, and not when the overwrite

actually occurs. Handling overflows therefore requires a different

strategy (see Section 4).

Fuzzers can also underreport unique bugs. For example, under a

naïve call stack approach, two unique null dereferences in a single

function will be reported as just one unique bug. Our technique

can identify each bug uniquely via independent program transfor-

mations.

3 SEMANTIC CRASH BUCKETING
This section introduces Semantic Crash Bucketing (SCB). Semantic

Crash Bucketing is a general method for bucketing crashes in terms
of program transformation (i.e., a semantic delta). Semantic Crash

Bucketing can be performed with arbitrary program transforma-

tions. Our goal in this section is to develop a way for determining

how well approximate fixes identify unique bugs compared to (a)

ground truth fixes and (b) existing methods in fuzzers. We now in-

troduce the problem definition and application of SCB for detecting

inaccurate error reports.

3.1 Problem Formulation
A bug in our context is a software flaw that leads to an error (i.e.,

undesirable program behavior); an error is a deviation from ex-

pected behavior defined by a test oracle. We address on the types of

bugs typically found by fuzzers, namely those that induce runtime

crashes. For such bugs, the error oracle is signaled by a runtime

failure: a crash results in SEGFAULT.

614



ASE ’18, September 3–7, 2018, Montpellier, France Rijnard van Tonder, John Kotheimer, and Claire Le Goues

Semantic Crash Bucketing groups crashing inputs according to

a program change that nullifies those inputs (i.e., cause the inputs

to no longer crash the program). Thus, a true fix for a unique bug

maps all crashing inputs for that bug to a unique bucket. Group-

ing crashes as a function of known fixing patches is a de facto

method for establishing ground truth classification of fuzzer crash

reports [14]. We use this idea to develop a general method of iden-

tifying misbucketing (e.g., duplicate crash reports) arising from

approximate fixes and fuzzers.

Ideal Bucketing.Webegin by defining an Ideal Bucketing, where

the correct fixing patches for unique bugs in a program are known

or presumed. This definition represents ground truth to measure the

effectiveness of our approach (Section 5). The intuition is straight-

forward: some known or presumed program transformationTi fixes
all crashing input associated with a bug i , and only those inputs.

Ti is by construction the theoretically ideal oracle transformation

that correctly fixes the bug i and thus all of the crashing behavior

it can cause. In practice, we may think of such a transformation as

a correct developer-written patch for a single bug.

We express Ideal Bucketing in terms of unique bugs, the crashes

they induce, and their fixes. Let i ∈ n be the identifier for a unique

bug i of n unique bugs in a program P . A unique bug i is associated
with a set of one or more crashing inputs, which we denote by

a bucket bi . Let Ti : P → P be a function that applies a correct

fix to the program P , for unique bug i . A correct fix Ti fixes all
crash-inducing inputs bi due to i , but none of the crashes due to a

different bug j with crashing inputs bj .
We express all buckets containing crashing inputs uniquely fixed

by knownTi , i ∈ n as disjoint partitions B = b1 ⊎ · · · ⊎bn under the

correctness assumption of Ti . For a particular Ti , ideal bucketing
implies:

∀ bi ∈ B,

∀ bj ∈ B \ bi s.t.

∀ ci ∈ bi , ⟨Ti (P ), ci ⟩ ⇝̸ crash

∀ c j ∈ bj , ⟨Ti (P ), c j ⟩⇝ crash

Where ⟨Ti (P ), c⟩ ̸⇝ crash expresses that the program P under

transformation of fix Ti and executed on crashing input c does not
induce a runtime crash. Ideal bucketing for a bug i expresses
that the fix Ti associates non-crashing behavior with all previously

crashing inputs c ∈ bi , but not any crashes for other buckets bj ∈

B \ bi .
4

One subtlety of Ideal Bucketing is the special case where a

single input may trigger multiple bugs. For example, two separate

buffer overflow copies (i.e., two bugs b1 and b2) along the same

execution path may overwrite the stack (twice) in a single execu-

tion. From our definition, neither corresponding fix T1 nor T2 will
bucket the crashing input. However, we can extend the definition to

account for composition of transformations T1 and T2 to place such

a crashing input into a separate bucket that represents a composite

fault. Although conceptually useful, we focus on logically discrete

fixes (based on developer patches) to associate crashing inputs

with bugs so that it is tenable to experimentally compare real and

approximate fixes. In practice, fuzzer-generated inputs typically

4
Note: if B \ bi = ∅ then the constraint on bj holds vacuously.

trigger single bugs, and our results corroborate this observation.

Classifying composite faults is an open problem [22] and we leave

the consideration of using program transformation for classifying

such faults to future work.

3.2 Detecting Duplicates
One goal in fuzz triaging is to approximate the ground truth ideal

bucketing strategy, minimizing overhead and confusion for the

engineer using a fuzzer to identify defects. Approximations are

done by, e.g., unique call stack hashes or unique branch sequences.

Such approximations can fail, however, leading to misbucketing
of crashing inputs. Misbucketing can be classified into two cate-

gories [41]:

(1) duplicate bug reporting and

(2) suppressed unique bugs: unreported unique bugs that are

missed by crash bucketing (or “over-condensing”).

In this paper, we deal with the first case of duplicate bug reports.

We now describe how we detect duplicate bug reports in terms of

fixing transformations Ti , where Ideal Bucketing does not hold.

Consider two example bug reports produced by a fuzzer: bug 1 with

a crash bucket b1 = {c1} containing crashing input c1, and bug 2

with b2 = {c2}. We say that b2 is a duplicate bug report if c2 actually
crashes the program due to bug 1. That is, the correct bucketing

implies b1 = {c1, c2} and no bug 2 should be reported. Duplicate

misbucketingwrongly implies bug uniqueness, increasing the triage

burden of engineers processing fuzzer output.

In an imprecise bucketing B, duplication occurs when the follow-

ing is true for a particular Ti :

∃ bi ∈ B,

∃ bj ∈ B \ bi s.t.

∀ c ∈ bi , ⟨Ti (P ), c⟩ ⇝̸ crash

∃ c
dup
∈ bj , ⟨Ti (P ), cdup⟩ ⇝̸ crash

That is, some crash c
dup
∈ bj actually fixed by Ti is considered a

crash for a different unique bug j, belonging to bj . By our correct-

ness assumption of Ti , any crash fixed by Ti must belong to bi for
ideal bucketing to hold. Note that if c is the only crash in bj then
a unique bucket is implied, resulting in a duplicate report of bug i
as some other bug j that should not exist.

In summary, given correct Ti ’s, we can determine ground truth

Ideal Bucketing and detect duplicate bug reports as deviations

from Ideal Bucketing.

3.3 Semantic Crash Bucketing Procedure
Our formulation leads to a straightforward procedure for identi-

fying misbucketing in fuzzers. Figure 2 illustrates the process. A

Fuzzer takes a program P and input to generate a set of crashes

C = c1, . . . , cn 1 . The fuzzer reports a set of crashing input accord-

ing to its built-in method for identifying unique bugs. We represent

the fuzzer output as a disjoint set of unique bugs indexed by I :
Bfuzzer =

⊎
i ∈I bi 2 .

As a matter of practicality, a fuzzer does not, by default, preserve

all generated crashing inputs. Instead, a fuzzer discards any crashing

input it believes triggers a bug it has already seen, and typically

outputs one representative crash for each bug/bucket it considers

615



Semantic Crash Bucketing ASE ’18, September 3–7, 2018, Montpellier, France

unique. This is expressed as Bfuzzer = (b1 = {c1}) ⊎ (b2 = {c2}) ⊎
· · · ⊎ (bn = {cn }).

Figure 2: The Semantic Crash Bucketing Procedure.

The function SCB takes as input the set of crashesC and a ground

truth fix Tj 3 . For a single fix Tj , SCB partitions the set of crashes

C into a disjoint set bj ⊎ br est by running each crash c ∈ C on the

modified program Tj (P ). The set bj contains all inputs fixed by Tj ,
as in the Ideal Bucketing case, while br est contains all inputs that
still cause Tj (P ) to crash. The final step 4 tests if the crashes in

a nonempty bucket bj distinguished by Tj is contained in Bfuzzer.
Because Bfuzzer contains a partition of unique bugs with just one

representative crash in any bi , there are only two outcomes for

the test bj ∈ Bfuzzer: (1) |bj | = 1 and is equal to some bi in Bfuzzer,
implying that Bfuzzer precisely buckets the crashing input for a bug

j, or (2) |bj | > 1 implying that the crashes in c ∈ bj are partitioned
across multiple buckets in Bfuzzer, implying that the fuzzer reported

duplicate bugs. For simplicity, Figure 2 illustrates the procedure

for a single fix Tj that fixes at least one crashing input in C . Ideal
Bucketing checks that every crashing input inC can be fixed (and

bucketed) uniquely by one or more fixes T .

4 GENERATING APPROXIMATE FIXES
This section explains how we instantiate our approach to perform

SCB using approximate fixes. In practice, a developer fix provides the
best assurance of correctly fixing a known bug, which we accept

as ground truth T for SCB. However, our goal is to reduce the

burden on developers to triage fuzzing output when the crash’s

fix is not immediately known. In general, fixing arbitrary bugs

automatically is hard [30]. Our core insight is that an approximate

fix T̂ is competitive with using T to identify unique bugs under

SCB. In our approach, T̂ is an automatic production encoding the

semantic properties necessary to fix possible crash-inducing bugs.

To demonstrate, we instantiate SCB with approximate fixes on null

dereferences and buffer overflows in C programs.

4.1 T̂ Production.
At a high level, T̂ is a production of a function G (P ,T ) that takes
two inputs: the source program P and a crash trace T . A crash

trace is produced by executing P on a single crashing input c . G
generates patches from fixing templates, and applies them to the

source. Patch application is predicated on certain information in the

program source, dynamic trace, or both.We refer to these predicates

as semantic cues that are sensitive to semantic properties of a bug

class. If the predicates are not satisfied, the program is not modified.

We concretely represent T̂ as a source-level patch. This has two

advantages. First, patches can be used as better bug reports [47],

supporting human triage and debugging. Second, patches can apply

without actually running the program, meaning static analyses (e.g.,

static symbolic execution) can also benefit from SCB.

We use GDB and ltrace to obtain dynamic crash traces. In principle,

any dynamic technique or analysis can enrich the space of semantic

cues to trigger program modification. We now describe in concrete

terms how we obtain T̂ for null dereferences and buffer overflows.

4.2 Null Dereferences
Null dereferences are typically fixed in one of two ways: correctly

initializing a variable or checking whether a variable is null before

dereferencing it [46, 49]. At a semantic level, a fix must enforce a

nonnull property for a variable that results in a null dereference

crash. We use the template in Figure 3 to approximate fixing a null

dereference. %%%PVAR%%% is a “hole” substituted with the offending

program variable.

1 if (%%%PVAR%%% == null) {

2 exit(101);

3 }

Figure 3: A template for null dereferences

The patch approximates error handling by exiting the program

on condition of PVAR being null (similar to the common C idiom

of return -1;). While simply exiting appears simplistic, it is in fact

appropriate for our objective to accurately bucket crashing input.

Consider if we chose a different strategy by returning a value or

initializing %%%PVAR%%%. Besides the difficulty of correctly inferring

appropriate values, we risk the possibility that the modified pro-

gram may continue executing and cascade errors or crash in other

unexpected ways. Without complete information of the root cause

to actually fix the bug, exiting is a conservative strategy: it acts as

an assertion ensuring the desired nonnull semantic property. The

correct fix in our motivating example supports this strategy: SQLite

conservatively aborts for error cases (but does some extra work

propagating the error up the call stack). Since the template can be

changed, our method does not preclude other possibilities; however,

our experiments show that the template in Figure 3 approximates

true fixes well enough for precise crash bucketing.

Template definition is only part of the larger problem: generating

the final patch T̂ also relies on identifying the appropriate program

variable and location to insert the patch. Semantic cues from a

GDB trace inform patch application: whether a variable dereference

at the point of crash is null. For example, our approximate patch

in Figure 1b checks the variable zSpan. The general procedure for

finding such crash-inducing variables works as follows:

(1) Attach GDB to the program, run it on the crashing input.

(2) Extract the source line and code reported at the crash.

(3) Parse the code for pointer dereference syntax (e.g., p->q).

(4) Working backwards, extract program variables that are deref-

erenced (e.g., extract p from p->q). Test, using GDB, whether

the variable is null in the debugger environment.

616



ASE ’18, September 3–7, 2018, Montpellier, France Rijnard van Tonder, John Kotheimer, and Claire Le Goues

(5) If the variable is null, return the variable and associated line

number. If not, move backwards a basic block and continue

from (3).

If the procedure succeeds, we substitute the template program

variable and insert the candidate patch just before the null deref-

erence. The null check could possibly be placed earlier, and a true

fix may indirectly prohibit a particular variable from being null (cf.

the correct SQLite fix in Figure 1a). Our decision is an inexpensive

compromise that we show works well in practice.

Before we use the patch for SCB, we first validate that the modi-

fied program no longer crashes for input c . The patch generation

procedure can produce more than one candidate patch, but our

implementation takes the first crash-fixing patch for bucketing.

4.3 Buffer Overflows
Buffer overflows are a class of memory corruption bugs commonly

discovered by fuzzers [7, 45]. Buffer overflows are typically fixed

by performing array bounds checking on memory accesses. Our

approximation to fixing buffer overflows thus focuses on array

length as the underlying semantic property to change. Inferring

array bounds can directly assist suggesting approximate fixes for

arbitrary overflow bugs, but generally requires additional anal-

ysis techniques and remains an open problem [19, 21, 24]. Our

approach is to truncate memory writes that may cause invalid ac-

cesses. Applications in failure-oblivious computing [44] and exploit

mitigation [33] use a similar mechanism.

Unsafe C library functions commonly trigger buffer overflows [19,

28, 33, 38] and persist in modern software.
5
Our approach applies

templates for common C library functions, such as memcpy, strcpy,

sprintf, gets, strcat, etc.

We give an example template for memcpy in Figure 4; the templates

for other overflows are conceptually similar. We rewrite existing

calls and restrict the length of data copied to a default concrete value

of 1. Restricting data to only one byte approximates a conservative

angelic value [13] that is likely to lead to non-crashing program

termination. Note that other possibilities exist: we may, for example,

instrument the code to obtain actual angelic values observed at

runtime and use these to construct fixes. Our experiments show

that our current choice works well for precise bucketing.

1 // Modify a possible overflowing memcpy call

2 size_t angelic_length = 1;

3 memcpy(%%%DST%%%,%%%SRC%%%,angelic_length);

Figure 4: A template for memcpy. %%%DST%%% binds to the destination
argument for the original memcpy call, and %%%SRC%%% is binds to the
source argument.

Compared to approximating null fixes, overflow fixes do not

attempt to stop execution: placing a condition on the length of a

potential buffer proves problematic if we do not know its bounds.

Conversely, simply exiting before calling an unsafe function will

overfit to unique crashing inputs that would crash after the function.

In addition, while memory corruption occurs during execution of

the C library functions, the program only crashes at a later point:
once an invalid memory access occurs in the heap, or when a

5
A strcpy vulnerability has been found in the Linux distribution as recent as 2017 [8].

corrupted return address is accessed on the stack.
6
These behaviors

motivate different semantic cues compared to null dereferences,

and emphasize the importance of a configurable approach. For

buffer overflows, we implement a procedure to discover possibly

problematic library calls and resolve their location. A patch template

like Figure 4 then replaces the call. The steps are as follows:

(1) Use ltrace to obtain a trace of library calls from the crashing

program run.

(2) Working backwards, resolve the source location of library

calls in the trace for which we have fixing templates.

(3) Apply the template at the location and rerun the program

on the original crashing input.

(4) If the program no longer crashes, emit the approximate fixing

patch T̂ . Else continue from step (2).

Similar to null dereferences, we validate that the program no

longer crashes for any change done in step 3, and use the first

crash-fixing patch for bucketing.

Extending Semantic Crash Bucketing. The patch templates and

rules for patching are embedded in Python scripts and are easy to

change. Users can define their own patch templates and semantic

cues for patch application depending on the semantic properties

of the bug types or application-specific APIs. The GDB interface and

ltrace output is available in the scripting framework for customiza-

tion. Additional analysis tools can be integrated (e.g., valgrind),

though naturally this requires some extra effort.

5 EXPERIMENTAL DESIGN
Ultimately, we want to know how well approximate fixes T̂ dis-

tinguish unique crashes compared to (a) ground truth bucketing

by T (developer fixes) and (b) built-in fuzzer deduplication (the

previous state of the art). We conduct a controlled experiment with

real bugs for which we know the ground truth fix (Section 5.1).

Unfortunately, for the purposes of our experiments, state of the art

fuzzers do not all neatly decouple fuzzing campaigns from crash

deduplication (e.g., deduplication is invoked during fuzzing iter-

ations). Instead, we first generate, for each bug, an upper bound

of inputs that trigger the same bug (i.e., a “crash corpus”) which

aim to exercise different execution paths triggering the same bug

(Section 5.2). We then provide this crash corpus as input to each

fuzzer, and run a campaign for a fixed length (2 hours), forcing the

fuzzer to perform deduplication on the crash corpus during fuzzing

iterations (Section 5.3). We use the developer fix and apply SCB

to obtain the ground truth number of duplicate bug reports after
the campaign (which includes each fuzzer’s deduplication effort

on the corpus). We then apply SCB with approximate fixes and
measure (a) the difference from ground truth, and (b) deduplication

improvement over existing fuzzers.

Hardware.We ran our experiments on an Ubuntu 16.04 LTS server

with 2 Xeon E5-2699 CPUs and 20GB of RAM. Crash Corpus gener-

ation and fuzzing campaigns all ran on a single CPU core. We used

four cores to recompile when validating whether an approximate

fix stops a crash.

6
Memory fence-posts can detect overwrites immediately, and don’t require a program

to SEGFAULT. This requires code instrumentation and extra shadow memory that hurts

fuzzing performance. Approximate fixes can be adapted accordingly, but we currently

do not assume such instrumentation.

617



Semantic Crash Bucketing ASE ’18, September 3–7, 2018, Montpellier, France

5.1 Bugs with Ground Truth
We evaluate on a sample of 18 null dereference and 3 buffer overflow

bugs in 6 real-world projects. For each bug we (a) extracted a ground

truth developer fix from the project and (b) sourced a crashing input

that triggers the bug (e.g., from online bug reports).

Projects with multiple bugs. SQLite is well-tested, popular data-
base software; w3m is a text-based web browser. For these projects,

we curated datasets of multiple bugs in a single revision. To be use-

ful, a deduplication strategy should correctly bucket crashing inputs

associated with a bug, but only that bug (and not those for other

bugs). That is, T̂ should be as close to Ideal Bucketing as possible,

giving strong assurance that T̂ does not overfit the input crashes.

Thus, we curated a dataset of fixes for 12 null dereference bugs

in a single SQLite revision. This is an onerous task because developer

fixes are often interspersed over long periods of time
7
and fixing

patches cannot always be automatically applied to previous revi-

sions due to intermediate code changes. In addition, a single patch

may contain multiple fixes, which we must separate for each respec-

tive bug. We therefore manually minimized and backported patches

to support a large, controlled ground truth study on multiple bugs

in SQLite.

We selected w3m out of a list of projects with reported CVEs [6]

and found that it also has multiple null dereferences for which we

could find developer fixes and crashing inputs that work on the

same revision.
8
We demonstrate SCB on four (4) null dereference

bugs on a single revision of w3m.

Other projects. We identify two null dereference bugs in differ-

ent versions of PHP, a large, popular project with well-documented

bugs and ground truth patches. We demonstrate SCB on real-world

overflow bugs in R, a large and popular software suite for statistical

computing; Conntrackd, a networking utility; and libmad, an MPEG

audio decoder.We apply SCB to a strcpy vulnerability in R. To demon-

strate real-world utility, we demonstrate SCB on two of our own

0-days found in previous fuzzing campaigns: a strcpy vulnerability

in Conntrackd and a memcpy vulnerability in libmad.9

5.2 Crash Corpus Generation
For each bug, we generate a large baseline corpus of crashing in-

puts from the initial crashing input, aiming to exercise different

execution paths triggering the same bug. We use this corpus to test

how well each fuzzer’s deduplication method copes with varying

behavior that trigger the same bug. Although a typical fuzzing

campaign begins with one or more non-crashing seed files as input,

it is hard to trigger a specific bug starting with arbitrary seed files:

the input search space is huge, and fuzzing nondeterminism means

it is difficult target specific areas of code. Isolating features in test

cases is one strategy for producing crashing test cases that may

correspond to the same bug [11, 23], but can take several days to

produce a large test set. Instead, we pursue a conceptually similar

approach, mutating an initially crashing input to explore differ-

ent execution paths that trigger a particular bug. We then use this

corpus as input to the other state-of-the-art fuzzers.

7
The SQLite bugs were fixed over a period of four months.

8
https://github.com/tats/w3m/issues?q=Null+pointer+is:closed

9
Vulnerability disclosure is in progress with CERT under VRF#18-07-YMMKT and

VRF#18-07-XKJZJ .

To do this, we use the existing “Crash Mode” procedure imple-

mented in AFL-Fuzz [7]. The crash exploration procedure tracks

branches executed by the input, and mutates input to try and force

execution along different branches, where the objective function is

to preserve crashing behavior. Inputs that fail to explore interesting

paths or crash the program are discarded. We run crash exploration

for two hours per bug, producing crash corpora of related inputs

for each bug’s crashing seed file.

5.3 Evaluating Fuzzers
We compare to three state of the art fuzzers: AFL-Fuzz [7], CERT

BFF [2], and Honggfuzz [3]. These fuzzers are frequently used in

industrial and research settings [10, 45, 48] and implement differ-

ent deduplication techniques. In general, fuzzers do not decouple

fuzzing campaigns with crash deduplication; crashes are dedupli-

cated during fuzzer iterations. To trigger crash deduplication, we

seed fuzzing campaigns for each fuzzer with the crash corpus.

Industrial-strength fuzzers are highly configurable. We sought to

evaluate on default options across varying parameters in coverage-

based fuzzing, call stack depth, branch sequences, and point-of-

failure information. We evaluate on five configurations across the

three fuzzers:

AFL-Fuzz. We use AFL-Fuzz in its default configuration. AFL is

instrumentation-driven, and keeps track of branches taken dur-

ing fuzzing. Roughly, this means that AFL is sensitive to uniquely

executed paths. AFL’s default method for fuzzing uses the same

mechanism as “Crash Mode”, starting from a non-crashing seed and

with an objective of discovering arbitrary crashes. One key differ-

ence, however, is that “Crash Mode” does not deduplicate the crash

corpus by default. Therefore, to approximate AFL’s deduplication

in a real campaign (while avoiding a redundant fuzzing campaign),

we use AFL’s own minimization procedure directly on the crash

corpus, then remove equivalent duplicates.

CERT BFF.We run CERT BFF in its default configuration, which

uses a call stack hash based on, by default, the five last calls (frames)

leading to a crash. This number is configurable. Thus, for the second

configuration, we set BFF to use a call stack of just one frame

to determine bug uniqueness. BFF also invokes a built-in input

minimizer while fuzzing on-the-fly.

Honggfuzz.We run Honggfuzz in its default configuration, which

uses a call stack hash of seven calls. By default, Honggfuzz considers

information at the point of failure when a crash occurs (e.g., the last

known PC instruction and faulting address) to report uniqueness.

Honggfuzz can enable a feedback-driven fuzzing mode, provided

a program is compiled with the coverage instrumentation. In the

first configuration, we disable coverage; in the second, we enable

coverage.

Note that due to input mutation during the campaign, a fuzzer

may trigger a bug that we do not have a fix for. As a final post

processing step, we use the ground truth fix T to filter out only the

crashes fixed by T .

6 EXPERIMENTAL RESULTS
Our main result is that SCB with approximate fixes is just as pre-
cise as using the ground truth fix for 19 out of 21 bugs across all

configurations. Approximate fixes suffer only small imprecision,

618

https://github.com/tats/w3m/issues?q=Null+pointer+is:closed


ASE ’18, September 3–7, 2018, Montpellier, France Rijnard van Tonder, John Kotheimer, and Claire Le Goues

Table 1: Semantic Crash Bucketing results. For each fuzzer configuration, we show the Ground Truth number of duplicate
crashes reported by the fuzzer (GT) compared to the number of duplicate crashes reported using approximate fixes with SCB
(SCB+T̂ ). Crash Corpus is the number of crashing inputs that initially seed fuzzing campaigns for each configuration. For
example, Bug #1 (first row) in the HFuzz, GT column shows that HFuzz reports 10 duplicates (determined by the ground truth
fix), while the approximate fix (SCB+T̂ ) reports 0 duplicates. When SCB+T̂ reports 0 duplicates, it is as precise as ground truth.

Crash AFL BFF-5 BFF-1 HFuzz HFuzz-Cov
Project Type ID Corpus GT SCB+T̂ GT SCB+T̂ GT SCB+T̂ GT SCB+T̂ GT SCB+T̂

SQLite Null-deref

1 191 25 0 2 1 1 1 10 0 9 1

2 482 85 0 2 0 1 0 4 0 2 0

3 153 38 0 6 0 0 0 16 0 14 0

4 326 48 0 0 0 0 0 1 0 0 0

5 139 34 0 0 0 0 0 0 0 0 0

6 66 21 0 0 0 0 0 0 0 0 0

7 97 20 0 0 0 0 0 0 0 0 0

8 235 82 0 1 0 0 0 3 0 3 0

9 389 29 0 1 0 0 0 1 0 1 0

10 270 65 0 0 0 0 0 1 0 1 0

11 167 45 1 0 0 0 0 4 2 1 1

12 108 36 0 0 0 0 0 0 0 0 0

Subtotal 2,623 528 1 12 1 2 1 40 2 31 2

w3m Null-deref

13 458 103 0 25 0 1 0 75 0 77 0

14 545 23 0 0 0 0 0 0 0 0 0

15 507 36 0 0 0 1 0 6 0 4 0

16 525 11 0 0 0 1 0 0 0 0 0

Subtotal 2,035 173 0 25 0 3 0 81 0 81 0

PHP Null-deref

17 81 8 0 0 0 0 0 0 0 0 0

18 272 32 0 0 0 0 0 0 0 0 0

R Overflow 19 7 5 0 3 0 0 0 145 0 198 0

Conntrackd Overflow 20 25 0 0 0 0 0 0 770 0 427 0

libmad Overflow 21 138 8 0 1 0 0 0 1 0 0 0

Total 5,181 754 1 41 1 5 1 1,037 2 737 2

and perform significantly better deduplication compared to state-

of-the-art fuzzer deduplication in our experiments.

Speed and Project Size. Automatic patch generation for approx-

imate fixes is fast. Generating a patch from crashing input and
validating that it fixes the crash (including project recompilation)

takes just 18 seconds on average across all bugs. The minimum time

for patch generation and validation is 2 seconds, the maximum 49

seconds. Our sample uses large real-world projects, ranging from

12 KLOC to 1 MLOC.

6.1 Overall Results
Table 1 shows results. Each row corresponds to a unique bug, with

assigned “ID”. “Crash Corpus” is the number of crashing inputs

that initially seed the fuzzing campaigns. We deduplicate crash-

ing inputs for each bug using five fuzz campaign configurations

(Section 5): AFL, BFF-5 and HFuzz are default configurations for
the three fuzzers. BFF-1 configures BFF to use just one call in its

call stack hash;HFuzz-Cov turns on coverage instrumentation for

feedback fuzzing in HonggFuzz. “GT” is the Ground Truth num-

ber of duplicate reports for each respective configuration, which

we obtain using the actual developer fix T for each bug. Column

“SCB+T̂ ” is the number of duplicate bugs for a campaign reported

using approximate fixes with SCB.

Except for Bugs 1 and 11 in SQLite (discussed subsequently), ap-

proximate fixes are as precise as the ground truth fix across all

configurations. That is, approximate fixes detect and remove all

duplicates across all fuzzing configurations for 19 out of 21 bugs.

For projects SQLite and w3m containing multiple bugs, none of our

approximate patches suppress any other unique bug. In aggregate,

SCB with approximate fixes significantly reduces the number of du-

plicate crash reports compared to the default configurations: from

754 and 1,037 to just two duplicates for AFL and HFuzz, respec-
tively, and a reduction of 41 duplicates to one duplicate forBFF-5. In
practice, crash reports produced by fuzzers must be further triaged

manually. Our results show that applying approximate fixes can

automatically cut down on the time that an engineer spends on

further triage.

Ground truth fixes expose different “semantic sensitivities” of

error reporting across configurations and bug types. AFL-Fuzz on

average reports more duplicate bugs; this is expected due to its

sensitivity to unique execution paths, especially for null derefer-

ences. On the other hand, AFL and BFF report moderate numbers

619



Semantic Crash Bucketing ASE ’18, September 3–7, 2018, Montpellier, France

of duplicates for overflow bugs, whereas Honggfuzz reports hun-

dreds of crashes for two stack-based overflows (Bugs 19 and 20).

Honggfuzz’s default sometimes considers portions of overflowing

stack data to signal unique bugs. Bug 21 is a heap-based overflow,

and does not adversely affect Honggfuzz compared to stack-based

bugs. BFF-1 uses just one call to calculate a unique stack hash

per bug, and reports the least amount of duplicate bugs. Although

BFF-1 appears to perform well, the configuration is nonstandard

in practice because it has the caveat that unique bugs triggered

in the same function are easily missed. None of the bugs in our

sample exposes this weakness in the BFF-1 configuration, but it is

uncommon in real fuzzing campaigns. We include it as one extreme

example where coarse, aggressive deduplication can be performed

at the cost of potentially missing unique bugs.

Note that even for cases where a fuzzing configuration reports

no duplicates for a particular bug, approximate fixes do as well as
fuzzer deduplication, and strictly better for the majority of cases

where duplicates are reported. This emphasizes an important point:

approximate fixes uniformly bucket crashes via configurable sen-

sitivity to bug-class semantics. Our results show that lightweight

program transformation can effectively avoid imprecision due to

varying (yet broadly applied) choices made by built-in fuzzer dedu-

plication methods.

6.2 Project-Specific Results
SQLite. Approximate fixes for SQLite perform identically to ground

truth except for Bugs 1 and 11. Patches for Bugs 1 and 11 fail

to fix 7 crashing inputs out of a larger duplicate crash set of 62

crashes reported by fuzzers. We analyzed these inputs and found

that they generally trigger different crashing behavior downstream

in execution that our approximate patches do not catch (but which

correct patches handle earlier upstream). The implication is not

severe: SCB+T̂ only reports 7 duplicates over all configurations,

which is comparatively low compared to duplicate fuzzer reports.

w3m. SCB+T̂ perfectly simulates ground truth bucketing for w3m.

Our approximate fixes are semantically close to developer fixes:

each approximate patch checks the same program variable for NULL

as the corresponding developer patch. Interestingly, Bug 13 pro-

duces far more duplicate crashes compared to the other three bugs

across all configurations. This demonstrates a latent benefit of our

approach: SCB can reveal properties about buggy behavior (e.g., we

speculate that Bug 13 can be triggered along many execution paths

and different call chains compared to the other bugs).

We confirmed that crash bucketing withT and T̂ result in disjoint
buckets for multiple bugs in SQLite and w3m, and corresponds to the

assumptions of Ideal Bucketing (i.e., zero overlap of crashing

inputs of distinct bug fixes).

PHP.We applied SCB to one bug each in PHP v5 (CVE-2016-6292)

and v7 (CVE-2016-10162). SCB improves over AFL’s reports; the

other configurations do not report duplicates.

R and Conntrackd both contain strcpy overflow bugs. The R bug

is assigned CVE-2016-8714. We discovered a 0-day strcpy bug in

Conntrackd in our own fuzzing efforts. Since no developer fix exists

for a 0-day, we manually debugged to develop a ground truth patch.

We have disclosed the bug and recommended the patch to the

maintainers. As mentioned, Honggfuzz is particularly sensitive to

changes in the stack, especially overflow vulnerabilities affecting

the stack. Honggfuzz provides a way of blacklisting stack hashes

to compensate,
10

but this option is disabled by default.

libmad. We also discovered a 0-day memcpy bug in libmad with our

own fuzzing. We developed our own patch to perform the correct

bounds checking on the length of bytes to copy. Interestingly, devel-

opers added a C assert statement before the memcpy call that checks

the correct bounds. However, assert statements are not compiled

in release versions and the bug results in a SEGFAULT. We used the

assert statement to inform a ground truth fix for checking the buffer

bound. Our deduplication gains is smaller for libmad, but remains

precise. Our libmad example shows that approximate fixes extend

to varieties of API calls in real world bugs with little effort.

6.3 Discussion
Merits of SCB and approximate fixes. Our approach can be lay-

ered on top of existing fuzzer deduplication methods or as a drop-in

replacement. In general, SCB opens the opportunity to parameterize

bucketing using targeted program transformation. One advantage

of automated patch generation is resilience to changes in unrelated

code across revisions. Concretely, we can generate an approximate

fix for any revision containing the bug. This is not true for static, de-

veloper written patches. As explained, we had to take careful effort

to isolate and backport existing patches for a ground truth study.

Approximate fixes can also improve fuzzing performance and

coverage [40]. Fuzzers are known to get stuck on shallow bugs

that restrict execution past a memory corruption bug.
11

Our ap-

proach provides a lightweight, parameterizable solution to augment

fuzzing behavior and overcome such obstacles. We are currently

investigating these extensions and additional bug classes.

Limitations. Our approach requires some up front manual cost

to parameterize automated behavior for generating approximate

fixes. Complexity of the targeted bug class also bears on the diffi-

culty of specifying appropriate semantic cues and patch templates,

and various approximations will affect accuracy of semantic bug

containment. We demonstrated, however, that conceptually simple

patch templates and semantic cues work well for common bugs

found by fuzzers in real world programs. We speculate that the

approach generalizes further to, e.g., division-by-zero, arithmetic

overflows and use-after-free bugs. In general, we offer that one-off

specifications per bug class is competitive with per-fuzzer configu-

ration that preclude fine-grained semantic control.

Our time spent selecting projects to evaluate was dominated

by whether we could find ground truth fixes and crashing inputs.

Though the sample is small, every project that satisfied these criteria

has worked with our approach so far (i.e., we do not fail to find

an approximate fix), modulo the need for incremental refinements

in our approach (e.g., we added a preprocessing step that expands

macros in PHP to discover null dereference syntax when the program

crashes).

In our experiments we observe that both approximate and devel-

oper fixes address unique bugs with a single check. Conceptually,

we can imagine a case where some buggy behavior (e.g,. a null

pointer) may be checked once before branching on multiple paths,

10
https://github.com/google/honggfuzz/pull/29

11
https://github.com/google/fuzzer-test-suite/tree/master/libxml2-v2.9.2

620

https://github.com/google/honggfuzz/pull/29
https://github.com/google/fuzzer-test-suite/tree/master/libxml2-v2.9.2


ASE ’18, September 3–7, 2018, Montpellier, France Rijnard van Tonder, John Kotheimer, and Claire Le Goues

or alternatively along two different paths. Depending on the trans-

formation, crashing inputs may thus map to one or two buckets.

Our approach for null dereferences currently follows the second

strategy for bucketing (since we add the check close to where the

dereference occurs). In our experiments, this matched the behavior

of developer fixes. Note that we can extend our approach to use

first strategy (i.e., by searching for branch points and inserting

checks upstream) and even compare different strategies; exploring

and comparing such transformation strategies holds interesting

potential for future work.

Due to the difficulty of performing organic fuzzing campaigns

for known bugs, we purposely generate a crash corpus by mutating

existing crashing inputs. The generated crash corpus likely inflates

the number crashes that an organic campaign would encounter.

Nevertheless, the crash corpus serves as a useful upper bound to

quantify precision of default deduplication techniques in fuzzers

versus SCB.

We evaluate our approach on existing state of the art fuzzers

under default options and with small modifications to BFF and

Honggfuzz. We recognize that deduplication can be tweaked and

improved with additional parameters and post processing (e.g.,

stack hash blacklists), but we generally believe that fuzzers (like

other tools), should run with sensible defaults.

7 RELATEDWORK
Our approach relates generally to existing work in identifying bug

uniqueness and bucketing crashing inputs [14, 17, 18, 41]. Of partic-

ular interest, Chen et al. [14] propose a machine learning approach

that ranks interesting test cases for compiler fuzzer output, and use

fixing patches as ground truth to map crashing inputs to unique

bugs. Semantic Crash Bucketing draws on the idea of using ground

truth fixes to precisely identify unique bugs, obtaining similar pre-

cision to ground truth by automatically approximating fixes.

Recent work by Pham et al. [41] uses a clustering algorithm

that relies on a semantic characterization of inputs as constraints

over paths, with particular applicability to symbolic executors. Our

approach also promotes a semantic characterization of bugs, but

focuses on being sensitive to semantic properties of bugs them-

selves, rather than summarizing crashing inputs in terms of path

constraints. Broadly, current techniques manipulate and analyze

program input or otherwise instrument programs to obtain “read-

only” behavior of programs (such as input coverage [14], constraints

on input [41], or crash callstack [37]) to group crashes. To the best

of our knowledge, SCB is the first technique that appeals to program
modification for precisely grouping crashing input in the absence

of ground truth fixes.

Angelic debugging [13] seeks to modify programs by replacing

expressions with values, which bears conceptual similarity to our

approximating fixes for C library functions. Our problem focus

differs, however: we seek accurate crash bucketing in the presence

of duplicated or unreported bugs, while Angelic debugging seeks

to fix failing test cases while preserving existing passing test cases.

In terms of program modification, our work relates to failure-

oblivious computing [35, 44]. For instance, our rule-based appli-

cation of fix templates share similarities with the idea proposed

by Long et al. [35], who modify a program so that a null derefer-

ence does not cause it to crash. The objective of failure-oblivious

computing, however, is to make program execution resilient to

crash-inducing effects of bugs such as null dereferences or divide-

by-zero errors. In contrast, SCB seeks to isolate unique bugs by

selectively applying program transformation, rather than providing

an automatic catch-all technique for keeping a program running in

the interest of resilience. Syntactic patches promote the benefit of

“patches as better bug reports” [47] so that engineers can analyze

semantic effects that influence crash bucketing. Peng et al. [40]

show that applying program transformation while fuzzing can in-

crease program coverage and reveal more bugs; while our approach

focuses on accurate crash bucketing, our technique complements

this recent idea.

Fault localization [15, 25, 32, 43] and automatic program re-

pair [30, 33, 49] share similar high level goals for identifying bugs

and automatically fixing them. This work is broadly complemen-

tary to ours, providing techniques that can assist with accurately

identifying fault locations for patch placement, and appropriate

program transformations for different bug classes.

8 CONCLUSION
We introduced Semantic Crash Bucketing, a way to perform crash

bucketing using lightweight program transformation. We then de-

veloped an automatic approach that applies patch templates to

approximate real developer fixes to perform crash bucketing. Our

approach uses configurable rules (specified once per bug class) that

instantiate and apply patch templates based on crashing behavior.

Unlike coarse deduplication methods, rules and templates are sen-

sitive to bug-specific semantic properties and crashing behavior.

We developed approximate fixes for null dereferences and buffer

overflows. We performed a ground truth study comparing SCB and

approximate fixes to (a) true developer fixes and (b) crash dedupli-

cation of three state of the art fuzzers (AFL, BFF, and Honggfuzz).

Our results show that approximate fixes are competitive with crash

bucketing precision of true developer fixes, and performs strictly

better deduplication than all tested fuzzer configurations.

ACKNOWLEDGMENTS
This work is partially supported under NSF grant number CCF-

1750116 and CCF-1563797. All statements are those of the authors,

and do not necessarily reflect the views of the funding agency. The

authors would like to thank Jeremy Lacomis for copy editing earlier

versions of this work.

REFERENCES
[1] 2018. https://github.com/google/oss-fuzz. Online; accessed 26 April 2018.

[2] 2018. https://www.cert.org/vulnerability-analysis/tools/bff-download.cfm. On-

line; accessed 26 April, 2018.

[3] 2018. https://github.com/google/honggfuzz. Online; accessed 26 April, 2018.

[4] 2018. https://cve.mitre.org/. Online; accessed 26 April, 2018.

[5] 2018. https://lcamtuf.blogspot.com/2015/04/finding-bugs-in-sqlite-easy-way.

html. Online; accessed 26 April, 2018.

[6] 2018. https://access.redhat.com/security/security-updates/#/cve. Online; ac-

cessed 26 April, 2018.

[7] 2018. AFL-Fuzz. http://lcamtuf.coredump.cx/afl/. Online; accessed 26 April, 2018.

[8] 2018. CVE-2017-12762. https://patchwork.kernel.org/patch/9880041/. Online;

accessed 26 April, 2018.

[9] 2018. Microsoft Security Risk Detection. https://www.microsoft.com/en-us/

security-risk-detection/. Online; accessed 26 April, 2018.

621

https://github.com/google/oss-fuzz
https://www.cert.org/vulnerability-analysis/tools/bff-download.cfm
https://github.com/google/honggfuzz
https://cve.mitre.org/
https://lcamtuf.blogspot.com/2015/04/finding-bugs-in-sqlite-easy-way.html
https://lcamtuf.blogspot.com/2015/04/finding-bugs-in-sqlite-easy-way.html
https://access.redhat.com/security/security-updates/#/cve
http://lcamtuf.coredump.cx/afl/
https://patchwork.kernel.org/patch/9880041/
https://www.microsoft.com/en-us/security-risk-detection/
https://www.microsoft.com/en-us/security-risk-detection/


Semantic Crash Bucketing ASE ’18, September 3–7, 2018, Montpellier, France

[10] 2018. Public Vulnerabilities Discovered Using BFF. https://vuls.cert.org/

confluence/display/tools/Public+Vulnerabilities+Discovered+Using+BFF. Online;

accessed 26 April, 2019.

[11] Mohammad Amin Alipour, Alex Groce, Rahul Gopinath, and Arpit Christi. 2016.

Generating focused random tests using directed swarm testing. In International
Symposium on Software Testing and Analysis (ISSTA ’16). 70–81.

[12] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. 2014.

Enhancing symbolic execution with veritesting. In International Conference on
Software Engineering (ICSE ’14). 1083–1094.

[13] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodík. 2011. Angelic

debugging. In International Conference on Software Engineering (ICSE ’11). 121–
130.

[14] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric

Eide, and John Regehr. 2013. Taming compiler fuzzers. In Conference on Program-
ming Language Design and Implementation (PLDI ’13). 197–208.

[15] Holger Cleve and Andreas Zeller. 2005. Locating causes of program failures. In

International Conference on Software Engineering (ICSE ’05). 342–351.
[16] Zack Coker and Munawar Hafiz. 2013. Program transformations to fix C integers.

In International Conference on Software Engineering (ICSE ’13). 792–801.
[17] Weidong Cui, Marcus Peinado, Sang Kil Cha, Yanick Fratantonio, and Vasileios P

Kemerlis. 2016. RETracer: Triaging crashes by reverse execution from partial

memory dumps. In International Conference on Software Engineering (ICSE ’16).
820–831.

[18] Yingnong Dang, Rongxin Wu, Hongyu Zhang, Dongmei Zhang, and Peter Nobel.

2012. ReBucket: A method for clustering duplicate crash reports based on call

stack similarity. In International Conference on Software Engineering (ICSE ’12).
1084–1093.

[19] Vinod Ganapathy, Somesh Jha, David Chandler, David Melski, and David Vitek.

2003. Buffer overrun detection using linear programming and static analysis. In

Conference on Computer and Communications Security (CCS ’03). 345–354.
[20] Patrice Godefroid and Daniel Luchaup. 2011. Automatic partial loop summariza-

tion in dynamic test generation. In International Symposium on Software Testing
and Analysis (ISSTA ’11). 23.

[21] Denis Gopan, Evan Driscoll, Ducson Nguyen, Dimitri Naydich, Alexey Loginov,

and DavidMelski. 2015. Data-Delineation in Software Binaries and its Application

to Buffer-Overrun Discovery. In International Conference on Software Engineering
(ICSE ’15). 145–155.

[22] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2017. The Theory of Composite

Faults. In International Conference on Software Testing, Verification (ICST ’17).
47–57.

[23] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. 2012.

Swarm testing. In International Symposium on Software Testing and Analysis
(ISSTA ’12). 78–88.

[24] Brian Hackett, Manuvir Das, Daniel Wang, and Zhe Yang. 2006. Modular check-

ing for buffer overflows in the large. In International Conference on Software
Engineering (ICSE ’06). 232–241.

[25] James A. Jones andMary Jean Harrold. 2005. Empirical evaluation of the tarantula

automatic fault-localization technique. In International Conference on Automated
Software Engineering (ASE ’05). 273–282.

[26] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Auto-

matic patch generation learned from human-written patches. In International
Conference on Software Engineering (ICSE ’13). 802–811.

[27] Shuvendu K. Lahiri, Rohit Sinha, and Chris Hawblitzel. 2015. Automatic Rootcaus-

ing for Program Equivalence Failures in Binaries. In Computer Aided Verification
(CAV ’15). 362–379.

[28] David Larochelle and David Evans. 2001. Statically Detecting Likely Buffer

Overflow Vulnerabilities. In USENIX Security Symposium.

[29] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.

2012. A Systematic Study of Automated Program Repair: Fixing 55 out of 105

Bugs for $8 Each. In International Conference on Software Engineering (ICSE ’12).
3–13.

[30] Claire Le Goues, Stephanie Forrest, andWestleyWeimer. 2013. Current challenges

in automatic software repair. Software Quality Journal 21, 3 (2013), 421–443.
[31] Frank Li and Vern Paxson. 2017. A Large-Scale Empirical Study of Security

Patches. In Conference on Computer and Communications Security (CCS ’17).
2201–2215.

[32] Ben Liblit, Mayur Naik, Alice X. Zheng, Alexander Aiken, and Michael I. Jordan.

2005. Scalable statistical bug isolation. In Programming Language Design and
Implementation (PLDI ’05). 15–26.

[33] Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, Bing Mao, and Li Xie. 2007. AutoPaG:

towards automated software patch generation with source code root cause identi-

fication and repair. In Symposium on Information, Computer and Communications
Security. 329–340.

[34] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning

Correct Code. In Principles of Programming Languages (POPL ’16). 298–31.
[35] Fan Long, Stelios Sidiroglou-Douskos, and Martin C. Rinard. 2014. Automatic

runtime error repair and containment via recovery shepherding. In Conference
on Programming Language Design and Implementation (PLDI ’14). 227–238.

[36] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scal-

able Multiline Program Patch Synthesis via Symbolic Analysis. In International
Conference on Software Engineering (ICSE ’16). 691–701.

[37] D Molnar, XC Li, and DA Wagner. 2009. Dynamic test generation to find integer

bugs in x86 binary linux programs. In USENIX Security Symposium. 67–82.

[38] Paul Muntean, Vasantha Kommanapalli, Andreas Ibing, and Claudia Eckert. 2015.

Automated Generation of Buffer Overflow Quick Fixes Using Symbolic Execution

and SMT. In Computer Safety, Reliability, and Security (SAFECOMP ’15). 441–456.
[39] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-

dra. 2013. SemFix: ProgramRepair via Semantic Analysis. International Conference
on Software Engineering, 772–781.

[40] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: fuzzing by

program transformation. In IEEE Symposium on Security and Privacy.
[41] Van-Thuan Pham, Sakaar Khurana, Subhajit Roy, and Abhik Roychoudhury. 2017.

Bucketing Failing Tests via Symbolic Analysis. In Fundamental Approaches to
Software Engineering Conference (FASE ’17). 43–59.

[42] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David

Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection

for Fuzzing. In USENIX Security Symposium. 861–875.

[43] Manos Renieris and Steven P. Reiss. 2003. Fault Localization With Nearest

Neighbor Queries. In International Conference on Automated Software Engineering
(ASE ’03). 30–39.

[44] Martin C Rinard, Cristian Cadar, Daniel Dumitran, Daniel M Roy, Tudor Leu, and

William S Beebee. 2004. Enhancing Server Availability and Security Through

Failure-Oblivious Computing.. In OSDI, Vol. 4. 21–21.
[45] Kostya Serebryany. 2017. OSS-Fuzz-Google’s continuous fuzzing service for open

source software. In USENIX Security Symposium.

[46] Mauricio Soto, Ferdian Thung, Chu-Pan Wong, Claire Le Goues, and David

Lo. 2016. A deeper look into bug fixes: patterns, replacements, deletions, and

additions. In International Conference on Mining Software Repositories (MSR ’16).
512–515.

[47] Westley Weimer. 2006. Patches as better bug reports. In Generative Programming
and Component Engineering (GPCE ’06). 181–190.

[48] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013.

Scheduling Black-box Mutational Fuzzing. In Conference on Computer & Commu-
nications Security (CCS ’13). 511–522.

[49] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian

R. Lamelas Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus.

2017. Nopol: Automatic Repair of Conditional Statement Bugs in Java Programs.

IEEE Trans. Software Eng. 43, 1 (2017), 34–55.

622

https://vuls.cert.org/confluence/display/tools/Public+Vulnerabilities+Discovered+Using+BFF
https://vuls.cert.org/confluence/display/tools/Public+Vulnerabilities+Discovered+Using+BFF

	Abstract
	1 Introduction
	2 Motivating Example
	3 Semantic Crash Bucketing
	3.1 Problem Formulation
	3.2 Detecting Duplicates
	3.3 Semantic Crash Bucketing Procedure

	4 Generating Approximate Fixes
	4.1  Production.
	4.2 Null Dereferences
	4.3 Buffer Overflows

	5 Experimental Design
	5.1 Bugs with Ground Truth
	5.2 Crash Corpus Generation
	5.3 Evaluating Fuzzers

	6 Experimental Results
	6.1 Overall Results
	6.2 Project-Specific Results
	6.3 Discussion

	7 Related Work
	8 Conclusion
	References

