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Abstract—The decompiler is one of the most common tools for
examining binaries without corresponding source code. It trans-
forms binaries into high-level code, reversing the compilation
process. Decompilers can reconstruct much of the information
that is lost during the compilation process (e.g., structure and type
information). Unfortunately, they do not reconstruct semantically
meaningful variable names, which are known to increase code un-
derstandability. We propose the Decompiled Identifier Renaming
Engine (DIRE), a novel probabilistic technique for variable
name recovery that uses both lexical and structural information
recovered by the decompiler. We also present a technique for
generating corpora suitable for training and evaluating models
of decompiled code renaming, which we use to create a corpus of
164,632 unique x86-64 binaries generated from C projects mined
from GITHUB.1 Our results show that on this corpus DIRE can
predict variable names identical to the names in the original
source code up to 74.3% of the time.

I. INTRODUCTION

Software reverse engineering is the problem of understand-
ing the behavior of a program without having access to its
source code. Reverse engineering is often used to predict
the behavior of malware [1]–[3], discover vulnerabilities [1],
[4], [5], and patch bugs in legacy software [4], [5]. For
malware and malicious botnets, reverse engineering enables
understanding and response, and helps identify and patch
infection vectors. For example, by reverse engineering the
Torbig botnet (which caused 180K infections and collected
70GB of credit card/bank account information), responders
were able to predict future domain names that bots would
contact, and redirect the bots to servers under the responders’
control [6]. Reverse engineering can also help identify who
created a piece of malware, as was done for the Uroburos
rootkit [7] (which captured files and network traffic while
propagating over networks of companies and public author-
ities), and estimate the extent of infection [8].

One of the main tools reverse engineers use to inspect
programs is the disassembler—a tool that translates a binary
to low-level assembly code. Disassemblers range from simple
tools like GNU Binutils’ objdump [9], to more advanced
tools like IDA [10], which can be used interactively and
have more sophisticated features. However, reasoning at the
assembly level requires considerable cognitive effort even with

1Data available at https://doi.org/10.5281/zenodo.3403077

these advanced features [2], [4], [5]. More recently, reverse
engineers are employing decompilers such as Hex-Rays [11]
and Ghidra [12], which reverse compilation by translating
the output of disassemblers into code that resembles high-
level languages such as C, to reduce the cognitive burden
of understanding assembly code. These state-of-the-art tools
are able to use program analysis and heuristics to reconstruct
information about a program’s variables, types, functions, and
control flow structure.

Even though decompiler output is more understandable than
raw assembly, decompilation is often incomplete. Compilers
discard source-level information and lower its level of abstrac-
tion in the interest of binary size, execution time, and even
obfuscation. Comments, variable names, user-defined types,
and idiomatic structure are all lost at compile time, and are typ-
ically unavailable in decompiler output. In particular, variable
names, which are highly important for code comprehension
and readability [13], [14], become nothing more than arbitrary
placeholders such as VAR1 and VAR2.

In this work, we present DIRE (Decompiled Identifier
Renaming Engine), a novel neural network approach for
assigning meaningful names to variables in decompiled code
(Section III). To build DIRE, we rely on two key insights.
Our first insight is that software is natural, i.e., programmers
tend to write similar code and use the same variable names
in similar contexts [15], [16]. Therefore, because of this
repetitiveness, if given a large enough training corpus one can
learn appropriate variable names for a particular context.

Prior approaches exist to predict natural variable names
from both source code [17]–[20] and compiled executa-
bles [21], [22]. However, approaches to predict variable names
from executables either operate directly on the binary seman-
tics [22], [23], or on the lexical output of the decompiler [21].
The former ignores the rich abstractions that modern decom-
pilers are able to recover. The latter is an improvement, but a
lexical program representation is by its very nature sequential,
and lacks rich structural information that could be used to
improve predictions. In contrast, DIRE uses the extended
context provided by the decompiler’s internal abstract syntax
tree (AST) representation of the decompiled binary, which
encodes additional structural information.

To train such models, one needs training data that specifies
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what names are natural in what contexts. Our second key in-
sight is that unlike other domains, where creating training data
often requires manual curation (e.g., machine translation [24]),
it is possible to automatically generate large amounts of train-
ing data for identifier name prediction, To that end, we mine
open-source C code from GITHUB, compile it with debugging
information such that the binaries preserve the original names,
and decompile those binaries so that the output contains the
original names. We then strip the debug symbols, decompile
the binary again, and identify the alignment between the
identifiers in the two versions of the decompiler outputs. While
this is conceptually straight-forward, the two outputs are not
simply α-renamings, making the process of calculating these
alignments far from trivial. Prior work identified alignments
based entirely on heuristics [21]. In contrast, we observe
that the set of instruction addresses that access each variable
uniquely identifies that variable, and this can be used to
generate accurate alignments (Section IV).

With these insights we train and evaluate DIRE on a large
dataset of C code mined from GITHUB, showing that we can
predict variable names identical to those chosen by the original
developer up to 74.3% of the time. In short, we contribute:
• Decompiled Identifier Renaming Engine (DIRE), a tech-

nique for assigning meaningful names to decompiled
variables that outperforms previous approaches.

• A novel technique for generating corpora suitable for
training both lexical and graph-based probabilistic models
of variable names in decompiled code.

• A dataset of 3,195,962 decompiled x86-64 functions and
parse trees annotated with gold-standard variable names.1

II. BACKGROUND

Before diving into the technical details of our approach,
we start with some background on decompilation, statistical
models of source code, and the two particular classes of deep
learning models we rely on, recurrent neural networks (RNNs)
and gated-graph neural networks (GGNNs).

A. Decompilation

At a high level, a compiler generates binaries from source
using a pipeline of processing stages, and decompilers try to
reverse this pipeline using various techniques [25]. Typically,
a binary is first passed through a platform-specific disassem-
bler. Next, assembly code is typically lifted to a platform-
independent intermediate representation (IR) using a binary-
to-IR lifter. The next stage is the heart of the decompiler, and
is where a number of program analyses are used to recover
variables, types, functions and control flow abstractions, which
are ultimately combined to reconstruct an abstract syntax tree
(AST) corresponding to an idiomatic program. Finally, a code
generator converts the AST to the decompiled output.

Decompilation is more difficult than compilation, because
each stage of a compiler loses information about the original
program. For example, the lexing/parsing stage of the
compiler does not propagate code comments to the AST.
Similarly, converting from the AST to IR can lose additional

1 int i;
2 for (i=0; i<10; i++)
3 {
4 z+=i;
5 }

1 int n=0;
2 while (n<10) {
3 x+=n;
4 n++;
5 }

487: var1 = dword ptr -8
487: var2 = dword ptr -4

;...
492: mov [rbp+var2], 0
499: jmp loc_4A5
49B: loc_49B:
49B: mov eax, [rbp+var2]
49E: add [rbp+var1], eax
4A1: add [rbp+var2], 1
4A5: loc_4A5:
4A5: cmp [rbp+var2], 9
4A9: jle loc_49B

Fig. 1: Two different C loops that compile to the same
assembly code. Note the normalized structure and names.

information. This loss of information allows multiple distinct
source code programs to compile to the same assembly code.
For example, the two loops in Fig. 1 are reduced to the same
assembly instructions. The decompiler cannot know which
source code was the original, but it does try to generate code
that is idiomatic, using heuristics to increase code readability.
For example, high-level control flow structures such as while

loops are preferred over goto statements.
The choice of which code to generate is largely heuristic,

but can be informed by the inclusion of DWARF debugging
information [26]. This debugging information, which can
optionally be generated at compile-time, greatly assists the
decompiler by identifying function offsets, types of variables,
identifier names, and user-defined structures and unions.

B. Statistical Models of Source Code

A wide variety of statistical models for representing source
code have been proposed based on the naturalness of soft-
ware [15], [16]. This key property states that source code is
highly repetitive given context, and is therefore predictable.
Statistical models capture the implicit knowledge hidden
within code, and apply it to build new software development
tools and program analyses, e.g., for code completion, docu-
mentation generation, and automated type annotation [27].

Predicting variable names is no exception. Work has shown
that statistical models trained on source code corpora can
predict descriptive names for variables in a previously-unseen
program, given the contextual features of the code the vari-
able is used in. These naming models can help to distill
coding conventions [28] or analyze obfuscated code [17],
[18]. Several classes of statistical models have been used for
renaming, including n-grams [18], [28], conditional random
fields (CRFs) [17], and deep learning models [29]–[31].

Two recent approaches aim to suggest informative variable
names in decompiled code. Our prior work [21] proposed a
lexical n-gram-based machine translation model that operates
on decompiler output. That approach used heuristics to align
variables in the decompiler output and original source, which
are needed for training, and is able to exactly recover 12.7%
of the original names in the test set. Contemporaneously, He
et al. [22] proposed a two-step approach that operates on a
stripped binary rather than the decompiler output. First, the
authors predict whether a low-level register or a memory offset
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maps to a variable at the source-level. Then, using structured
prediction with CRFs, they predict names and types for the
mapped variables. 63.5% of the variables in the test set for
which the first step succeeded could be recovered exactly.

C. Neural Network Models

Our approach builds on two advances in statistical mod-
els for representing source code: recurrent neural networks
(RNNs) and gated-graph neural networks (GGNNs).

1) Recurrent Neural Networks: RNNs are networks where
connections between nodes form a sequence [32]. They are
typically used to process sequences of inputs by reading in
one element at a time, making them well-suited to sequences,
such as source code tokens. In this work, we use long short-
term memory (LSTM) models [33], a variant of RNNs widely
used in text processing.

Formally, an LSTM has the following structure: given a
sequence of tokens {xi}ni=1, an LSTM

−→
f LSTM processes

them in order, maintaining a hidden state
−→
hi for each

subsequence up to token xi using the recurrent function−→
hi =

−→
f LSTM(emb(xi),

−→
hi−1), where emb(·) is an embedding

function mapping xi into a learnable vector of real numbers.
As we will elaborate later in Section III, we use two types

of LSTMs in DIRE: encoding LSTMs and decoding LSTMs.
An encoder LSTM reads the input sequence (e.g., a sequence
of source code tokens, as in Section III-B1) and encodes it
into continuous vectors; while a decoder LSTM takes these
vectors and generates the output sequence (e.g., the sequence
of predicted names for all identifiers, as in Section III-C).

2) Gated-Graph Neural Networks: While LSTMs are use-
ful for modeling sequences, they do not capture any additional
structural information. Within the decompilation task, struc-
tured information provided by the AST is a natural information
source about choice of variable names. For this purpose, we
also employ structural encoding of the code using GGNNs, a
class of neural models that map graphs to outputs [34], [35].
At a high level, GGNNs are neural networks over directed
graphs. Initially, we associate each vertex with a learned
or computed hidden state containing information about the
vertex. GGNNs compute representations for each node based
on the initial node information and the graph structure.

Formally, let G = 〈V,E〉 be a directed graph describing
our problem, where V = {vi} is the set of vertices and
E = {(vi 7→ vj , T )} is the set of typed edges. Let NT (vi)
denote the set of vertices adjacent to vi with edge type T .
In a GGNN, each vertex vi is associated with a state hg

i,t

indexed by a time step t. At each time step t, the GGNN
updates the state of all nodes in V via neural message passing
(NMP) [36]. Concurrently for each node vi at time t, NMP is
performed as follows: First, for each vj ∈ NT (vi) we compute
a message vector mvj 7→vi

T = WT ·hg
j,t−1, where WT is a type-

specific weight matrix. Then, all mv∗ 7→vi
∗ are aggregated, and

summarized into a single vector xg
i via element-wise mean

(pooling):

xg
i = MeanPool({mvj 7→vi

T : vj ∈ NT (vi),∀T }).

Token
Stream

AST

Decompiler DIRE
Binary Variable

Names

Fig. 2: High-level overview of our approach.

Finally, the state of every node vi is updated using a nonlinear
activation function f : hg

i,t = f(xg
i ,h

g
i,t−1). GGNNs use a

Gated Recurrent Unit (GRU) update function, fGRU(·), intro-
duced by Cho et al. [37]. By repeatedly applying NMP for T
steps, each node’s state gradually represents information about
that node and its context within the graph. The computed states
can then be used by a decoder, similarly to the LSTM-based
decoder architectures. As in LSTMs, all GGNN parameters
(parameters of fGRU(·) and the WT s) are optimized along
with the rest of the model.

III. THE DIRE ARCHITECTURE

We start with an overview of our approach, then dive into
the technical details of each component.

A. Overview

We designed DIRE to work on top of a decompiler as
a plugin that can automatically suggest more informative
variable names. We use Hex-Rays, a state-of-the-art industry
decompiler, though our approach is not fundamentally coupled
to Hex-Rays and can be adapted to other decompilers.

Fig. 2 gives a high-level overview of our workflow. First,
a binary is passed to a decompiler, which decompiles each
function in the binary. For each function, our plugin traverses
the AST, inserting placeholders at variable nodes. This pro-
duces two outputs: the AST and the tokenized code. These
outputs are provided as input to our neural network model,
DIRE, which generates unique variable names for each each
placeholder in the input. The decompiler output can then be
rewritten to include the suggested variable names.

Fig. 3 gives an overview of the neural architecture. DIRE
follows an encoder-decoder architecture: An encoder neu-
ral network (Section III-B) first encodes the decompiler’s
output—both the sequence of decompiled code tokens and
its internal AST—and computes distributed representations
(i.e., real-valued vectors, or embeddings) for each identifier
and code element. These encoded representations are then
consumed by a decoder neural network (Section III-C) that
predicts meaningful names for each identifier based on the
contexts in which it is used.

The key takeaway is that DIRE uses both lexical informa-
tion obtained from the tokenized code as well as structural
information obtained from the corresponding ASTs. This is
achieved by using two encoders—a lexical encoder (Sec-
tion III-B1) and a structural encoder (Section III-B2)—to
separately capture the lexical and structural signals in the
decompiled code. As we will show, this combination of
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lexical and structural information allows DIRE to outperform
techniques that rely on lexical information alone [21].

B. The Encoder Network

Each encoder network in DIRE outputs two sets of repre-
sentations:
• A code element representation for each element in the de-

compiler’s output. Depending on the type of the encoder,
a code element will either be a token in the surface code
(for the lexical encoder), or a node in the decompiler’s
internal AST (for the structural encoder).

• An identifier representation for each unique identifier
defined in the input binary, which is a real-valued vector
that represents the identifier in the neural network.

The lexical and structural representations are then merged
to generate a unified encoding of the input binary (dashed
boxes in Fig. 3). By computing separate representations for
code elements and identifiers, the DIRE decoder can better
incorporate the contextual information in the encodings of
individual code elements to improve name predictions for the
different identifiers; see Section III-C.

1) Lexical Code Encoder: The lexical encoder sequentially
encodes the tokenized decompiled code, projecting each token
xi into a fixed-length vector encoding xi. Specifically, the
lexical encoder uses the sub-tokenized code as the input, where
a complex code token (e.g., the function name mystrcopy) is
automatically broken down into sub-pieces (e.g., my, str, and
copy) using SentencePiece [38], based on sub-token frequency
statistics. Sub-tokenization reduces the size of the encoder’s
vocabulary (and thus its training time), while also mitigating
the problem of rare or unknown tokens by decomposing them
into more common subtokens. We treat the placeholder and
reserved variable names (e.g., VAR1, VAR2, and the decompiler-
inferred name result) in the decompiler’s output as special
tokens that should not be sub-tokenized.

DIRE implements the lexical encoder using LSTMs (de-
scribed in Section II-C1). We use a bidirectional LSTM: The
forward network

−→
f LSTM processes the tokenized code {xi}ni=1

sequentially. The backward LSTM processes the input tok-
enized code in backward order, producing a backward hidden
state

←−
hi for each token xi. Intuitively, a bidirectional LSTM

captures informative context around a particular variable both
before and after its sequential location.

Element Representations We encode a token xi by con-
catenating its asssociated state vectors, i.e., xi = [

−→
hi :

←−
hi],

a common strategy in source code representations using
LSTMs [27]. For a particular token xi we compute the forward
(resp. backward) representation using both its embedding and
the hidden states of its preceding (resp. succeeding) tokens.
This is important because the resulting encoding xi captures
both the local and contextual information of the current token
and its surrounding code.

To compute the identifier representation v for each unique
identifier v, we collect the set of subtoken representations Hv

of v, and perform an element-wise mean over Hv to get a
fixed-length representation: v = MeanPool(Hv).

2) Structural Code Encoder: The lexical encoder only
captures sequential information in code tokens. To also learn
from the rich structural information available in the decompiler
AST, DIRE employs a gated-graph neural network (GGNN)
structural encoder over the AST (Section II-C2). This requires
a mechanism to compute initial node states, as well as design
choices of which AST edges to consider in the node encoding:

a) Initial Node States: The initial state of a node vi,
hg
i,t=0 is computed from three separate embedding vectors,

each capturing different types of information of vi: 1) An
embedding of the node’s syntactic type (e.g., the root note in
the AST in Fig. 3 has the syntactic type block). 2) For a node
that represents data (e.g., variables, constants) or an operation
on data (e.g., mathematical operators, type casts, function
calls), an embedding of its data type, computed by averaging
the embeddings of its subtokenized type. For instance, the
variable node VAR1 in Fig. 3 has the data type char *; its
embedding is computed by averaging the embeddings of the
type subtokens char and *. 3) For named nodes, an embedding
of the node’s name (e.g., the root node in Fig. 3 has a name
mystrcopy), computed by averaging the embeddings of its
content subtokens. The initial state hg

v,t=0 is then derived from
a linear projection of the concatenation of the three separate
embedding vectors. For nodes without a data type or name,
we use a zero-valued vector as the respective embedding.

b) Graph Edges: Our structural encoder uses different
types of edges to capture different types of information in the
AST. Besides the simple parent-child edges (solid arrows in
the AST in Fig. 3) in the original AST, we also augment it
with additional edges [30]:

• We add an edge from the root block node containing the
function name to each identifier node. The function name
can inform names of identifiers in its body. In our running
example the two arguments VAR1 and VAR2 defined in
the mystrcopy function might indicate the source and
destination of the copy. This type of link (“Function name
to args.” in Fig. 3) captures these naming dependencies.

• To capture the dependency between neighboring code,
we add an edge from each terminal node to its lexical
successor (“Successor terminal”).

• To propagate information among all mentions of an
identifier, we add a virtual “supernode” (rectangular node
labeled VAR1) for each unique identifier vi, and edges
from mentions of vi to the supernode (“Super node
link”) [36].

• Finally, we add a reverse edge for all edge types defined
above, modeling bidirectional information flow.

c) Representations: For the element representation, we
use the final state of the GGNN for node ni, hg

i,T , as its
representation: ni = hg

i,T (the recurrent process unrolls T
times; T = 8 for all our experiments). For the identifier
representation for each unique identifier vi, its representation
vi is defined as the final state of its supernode as the encoding
of vi. Since the supernode has bidirectional connections to all
the mentions of vi, its state is computed using the states of
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		else
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}
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Fig. 3: Overview of DIRE’s neural architecture. For clarity, we omit the data-flow links in the AST in the structural encoder.

all its mentions. Therefore, vi captures information about the
usage of vi in different occurrences.

3) Combining Outputs of Lexical and Structural Encoders:
The lexical and the structural encoders output a set of repre-
sentations for each identifier and code element. In the final
phase of encoding, we combine the two sets of outputs.
Code elements are combined by unioning the lexical set (of
code tokens) and structural set (of AST nodes) of element
representations as the final encoding of each input code
element; identifiers are combined by merging the lexical and
structural representations of each identifier v using a linear
transformation as its representation.

C. The Decoder Network

The decoder network predicts names for identifiers using
the representations given by the encoder. As shown in Fig. 3,
the decoder predicts names based on both the representations
of identifiers, and contextual information in the encodings of
code elements. Specifically, as with the encoder, we assume
an identifier name is composed of a sequence of sub-tokens
(e.g., destAddr 7→ dest, Addr; see Section III-B1).

The decoder factorizes the task of predicting idiomatic
names to a sequence of time-indexed decisions, where at
each time step, it predicts a sub-token in the idiomatic name
of an identifier. For instance, the idiomatic name for VAR1,
destAddr, is predicted in three time steps (s1 through s3)
using sub-tokens dest, Addr, and </i>, (the special token
</i> denoting the end of the token prediction process). Once
a full identifier name is generated, the decoder continues to
predict other names following a pre-order traversal of the
AST. As we will elaborate in Section IV, not all identifiers
in the decompiled code will be labeled with corresponding

“ground-truth” idiomatic names, since the decompiler often
generates variables not present in the original code. DIRE
therefore allows an identifier’s decompiler-assigned name to
be preserved by predicting a special </identity> token.

The probability of generating a name is therefore factorized
as the product of probabilities of each local decision while
generating a sub-token yt:

p(Y |X) =

T∏
t=1

p(yt|y<t, X),

where X denotes the input code, and Y is the full sequence
of sub-tokens for all identifiers, and y<t denotes the sequence
of sub-tokens before time step t.

We model p(yt|y<t, X) using an LSTM decoder, following
the parameterization in [39]. Specifically, to predict each sub-
token yt, at each time step t, the decoder LSTM maintains an
internal state st defined by

st = fLSTM([yt−1 : vt : ct], st−1),

where [:] denotes vector concatenation. The input to the
decoder consists of two representations: the embedding vector
of the previously predicted name, yt−1; and the encoder’s
representation of the current identifier to be predicted, vt.

Our decoder also uses attention [40] to compute a context
vector ct, generated by aggregating contextual information
from representations of relevant code elements. ct is computed
by taking the weighted average over encodings of AST nodes
and surface code tokens, for each current sub-tokenized name
yt. The decoder’s hidden state is then updated using the
context vector, incorporating the contextual information into
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the decoder’s state s̃t = W · [st : ct], where W is a weight
matrix. Then, the probability of generating a sub-token (yt) is:

p(yt|·) =
exp

(
yᵀ
t s̃t
)∑

y′ exp
(
y′ᵀs̃t

)
D. Training the Neural Network

Since DIRE is constructed from neural networks, training
data is required to learn the weights for each neural compo-
nent. Our training corpus is a set D = {〈Xi, Yi〉}, consisting
of pairs of code X and sub-token sequences Y , denoting
the decoder-predicted sequence of identifier names. DIRE is
optimized by maximizing the log-likelihood of predicting the
gold sub-token sequence Yi for each training example Xi:

∑
〈Xi,Yi〉

log p(Yi|Xi) =
∑
〈Xi,Yi〉

|Yi|∑
t=1

wt · log p(yi,t|Xi),

where Yi,t denotes the t-th sub-token in the decoder’s pre-
diction sequence Yi. As discussed in Section III-C, there
are intermediate variables in the decompiled code. To ensure
the decoder network will not be biased towards predicting
</identity> for other identifiers, we use a tuning weight wi

and set it to 0.1 for sub-tokens that correspond to intermediate
variables (and 1.0 otherwise).

IV. GENERATION OF TRAINING DATA

Training DIRE requires a large corpus of annotated data.
Fortunately, it is possible to create this corpus automatically,
starting from a large repository of existing C source code. At
a high level, each entry in our corpus corresponds to a source
code function, and consists of the information necessary to
train our model. An entry in the training corpus is illustrated
in Fig. 4. Each entry contains three elements: (a) the tokenized
code, with variables replaced by an ID that uniquely identi-
fies the variable in the function; (b) the decompiler’s AST
(Section II-A) modified to contain the same unique variable
IDs; and (c) a lookup table mapping variable IDs to both the
decompiler- and developer-assigned names. It is important to
assign a unique variable name to each variable to disambiguate
any shadowed variable definitions. The tokenized code and
AST representations are used in both the model’s input and
output. The input representation uses the decompiler-assigned
names, while the output uses the developer-assigned names.

Generating the placeholders and decompiler-chosen names
is relatively straightforward. First, a binary is compiled nor-
mally and passed to the decompiler. Next, for each function,
we traverse its AST and replace each variable reference with a
unique placeholder token. Finally, we instruct the decompiler
to generate decompiled C code from the modified AST,
tokenizing the output. Thus, we have tokenized code, an AST,
and a table mapping variable IDs to decompiler-chosen names.

The remaining step, mapping developer-chosen names to
variable IDs, is the core challenge in automatic corpus gener-
ation. Following our previous approach [21], we leverage the
decompiler’s ability to incorporate developer-chosen identifier

for ( VAR1 = ... VAR2 += VAR3 ; ...

(a) Tokenized decompiled code with variable placeholders.

VAR1 VAR2 VAR4

VAR2 VAR3

VAR1

(b) AST with placeholders.

ID Decompiler Developer

1 v1 ans
2 v2 size
3 i i
4 ptr head

(c) Variable lookup table.

Fig. 4: Entry in the training corpus. Each corresponds to a
function and contains (a) tokenized code (b) the AST, both
with variables replaced with unique IDs, and (c) a lookup
table containing decompiler- and developer-assigned names.

492:
block

49B:
while

49E:
block

4A9:
sle

4A5:
num 9

4A5:
v1

4A1:
preinc

4A1:
v1

492:
asg

492:
v1

492:
num 0

49E:
expr

49E:
asgadd

49E:
v2

49E:
v1

(a) AST without DWARF.

492:
for

49E:
block

4A9:
sle

4A1:
preinc

4A1:
i

492:
asg

492:
i

492:
num 0

49E:
expr

49E:
asgadd

49E:
z

49E:
i

4A5:
num 9

4A5:
i

(b) AST with DWARF.

Fig. 5: Decompiler ASTs for the code in Fig. 1. Hexadecimal
numbers indicate the location of the disassembled instruction
used to generate the node. While the ASTs are different,
operations on variables and their offsets are the same, enabling
mapping between variables (i.e., v17→i and v27→z).

names into decompiled code when DWARF debugging sym-
bols [26] are present in the binary. However, this alone is not
sufficient to identify which developer-chosen name maps to a
particular variable ID generated in the first step.

Specifically, challenges arise because decompilers use de-
bugging information to enrich the decompiler output in a
variety of ways, such as improving type information. Recall
from Section II that decompilers often make choices between
semantically-identical structures: the addition of debugging
information can change which structure is used. Unfortunately,
this means that the difference between code generated with and
without debugging symbols is not always an α-renaming. In
practice, the format and structure of the code can greatly differ
between the two cases. An example is illustrated in Fig. 5. In
this example, the first pass of the decompiler is run without
debugging information, and the decompiler generates an AST
for a while loop with two automatically-generated variables
named v1 and v2. Next, the decompiler is passed DWARF
debugging symbols and run a second time, generating the AST
on the right. While the decompiler is able to use the developer-
selected variable names i and z, it generates a very different
AST corresponding to a for loop.
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An additional challenge is that there is not always a
complete mapping between the variables in code generated
with and without debugging information. Decompilers often
generate more variables than were used in the original code.
For example, return (x + 5); is commonly decompiled to
int v1; v1 = x + 5; return v1;. The decompiled code in-
troduces a temporary variable v1 that does not correspond to
any variable in the original source code. In this case, there
is no developer-assigned name for v1, since it does not exist
in the original code. The use of debugging information can
change how many of these additional variables are generated.

One solution to these problems proposed by prior work
is to post-process the decompiler output using heuristics to
align decompiler-assigned and developer-assigned names [21].
However, this technique can only correctly align 72.8% of
variable names, therefore limiting the overall accuracy of any
subsequent model trained on this data. Instead, we developed
a technique that directly integrates with the decompiler to
generate an accurate alignment without using heuristics. Our
key insight is that while the AST and code generated by the
decompiler may change when debugging information is used,
instruction offsets and operations on variables do not change.
As a result, each variable can be uniquely identified by the set
of instruction offsets that access that variable.

For example, in Fig. 5, although there is not an obvious
mapping between the nodes in the trees, the addresses of the
variable nodes in the trees have not changed. This enables
us to uniquely identify each variable by creating a signature
consisting of the set of all offsets where it occurs. The
variables v1 and i have the signature {492,49E,4A1,4A5},
while v2 and z have the signature {49E}. Note that some uses
of variables overlap, e.g., v1 (i) is summed with v2 (z) in the
instruction at offset 49E. This necessitates collecting the full
set of variable uses to disambiguate these instances.2

In summary, to generate our corpus we: 1) Decompile
binaries containing debugging information. 2) Collect signa-
tures and corresponding developer-assigned names for each
variable in each function. 3) Strip debugging information
and decompile the stripped binaries. 4) Identify variables by
their signature, and rename them in the AST, encoding both
the decompiler- and developer-assigned names. 5) Generate
decompiled code from the updated AST. 6) Post-process the
updated AST and generated code to create a corpus entry. The
final output is a per-binary file containing each function’s AST
and decompiled code with corresponding variable renamings.

V. EVALUATION

We ask the following research questions:
• RQ1: How effective is DIRE at assigning names to

variables in decompiled code?
• RQ2: How does each component of DIRE contribute to

its efficacy?

2While it is possible for two variable signatures to be identical, we found
these collisions to occur very rarely in practice. In these cases we do not
attempt to assign names to variables.

TABLE I: Evaluation of DIRE. Values are percentages, higher
accuracy and lower character error rate (CER) are better.

DIRE Lexical Enc. Structural Enc.
Acc. CER Acc. CER Acc. CER

Overall 74.3 28.3 72.9 28.5 64.6 37.5
Body in Train 85.5 16.1 84.3 16.3 75.7 25.5
Body not in Train 35.3 67.2 33.5 67.7 26.3 76.1

• RQ3: How does provenance and quantity of data influ-
ence the efficacy of DIRE?

• RQ4: Is DIRE more effective than prior approaches?
a) Data Preprocessing: To answer our first two research

questions, we trained DIRE on 3,195,962 decompiled func-
tions extracted from 164,632 binaries mined from GITHUB.
First, we automatically scraped GITHUB for projects written
in C. Next, we modified project build scripts to include debug
information when compiling the project, and collected all
successfully generated 64-bit x86 binary files. We then hashed
each binary to remove any duplicates. We then passed these
binaries through our automated corpus generation system.

Finally, we filtered out any functions that did not have any
renamed variables and, for practical reasons, any functions
with more than 300 AST nodes. After filtering, 1,259,935
functions with an average AST size of 77 nodes remained.
These functions were randomly split per-binary into training,
development and testing sets with a ratio of 80:10:10. Splitting
the sets per-binary ensures that binary-specific identifiers are
not included in both the training and test sets.

b) Evaluation Methodology: After training, we ran
DIRE to generate name suggestions on the test data. We
evaluate the accuracy of these predictions, comparing the
predicted variable names to names used in the original code
(i.e., names contained in the debugging information) counting
a successful prediction as one exactly matching the original
name. However, there can be multiple, equally acceptable
names (e.g., file_name, fname, filename) for a given identi-
fier. An accuracy metric based on exact match cannot detect
these cases. We therefore use character error rate (CER), a
metric that calculates the edit distance between the original
and predicted names, then normalizes by the length of the
original name [41], assigning partial credit to near misses.

Recall from Section IV that there are often many more
variables in the decompiled code than in the original source;
these variables will not have a corresponding original name. In
our corpora, the median number of variables in each function
is 5, with 3 having a corresponding original name.

Although DIRE generates predictions for all variables,
we do not evaluate predictions on variables that do not
have a developer assigned name. We do this because it is
not necessarily incorrect for a renaming system to assign
names to variables not present in the original source code.
Recall the example where return (x + 5); is decompiled to
int v1; v1 = x + 5; return v1;. The name sum is likely
more informative than v1, and it would be unhelpful to penal-
ize a system that suggests this renaming. However, although
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1 void *file_mmap(int V1, int V2)
2 {
3 void *V3;
4 V3 = mmap(0, V2, 1, 2, V1, 0);
5 if (V3 == (void *) -1) {
6 perror("mmap");
7 exit(1);
8 }
9 return V3;
10 }

ID DIRE Dev.

1 fd fd

2 size size

3 buf ret

Fig. 6: Decompiled function (simplified for presentation),
DIRE variable names, and developer-assigned names.

renaming in these cases could be helpful, we do not want to
overapproximate the effectiveness of our system by claiming
any renaming of these variables as correct: it is also possible
to assign variables a misleading name that decreases the
readability of code by obfuscating the purpose of a variable.
For example, suggesting the name filename to replace v1 in
the above code would likely be misleading.

c) Neural Network Configuration: For our experiments
we replicate the neural network configuration of Allamanis
et al. [30]. We set the size of word embedding layers to be
128. The dimensionality of the hidden states for the recurrent
neural networks used in the encoders is 128, while the hidden
size for the decoder LSTM is 256. For both the sequential and
structural encoders, we use two layers of recurrent computa-
tion, adding another identical recurrent network to process the
decompiled code using the output hidden states of the first
layer. For both DIRE and the baseline neural systems, we
train each model for 60 epochs. At testing time, we use beam
search to predict the sequence of sub-tokenized names for each
identifier (Section III-C), with a beam size of 5.

A. RQ1: Overall Effectiveness

Experimental results are summarized in Table I. The “Over-
all” row shows the performance of our technique on the full
test set and the leftmost column shows the accuracy of DIRE.
From this, we can see that DIRE can recover 74.3% of the
original variable names in decompiled code, demonstrating
that it is effective in assigning contextually meaningful names
to identifiers in decompiled code.

Figure 6 shows an example renaming generated by DIRE.
Here, DIRE generates the variable names shown in the
“DIRE” column of the table. The developer-chosen names are
shown in the “Dev.” column. Two of three names suggested by
DIRE exactly match those chosen by the developer. Though
DIRE suggests buf instead of ret as the replacement for V3,
the name is not entirely misleading: mmap returns a pointer to
a mapped area of memory that can be written to or read from.

Work has shown that large code corpora may contain near-
duplicate code across training and testing sets, which can cause
evaluation metrics to be artificially inflated [42]. Though our
corpus contains no duplicate binaries, splitting test and training
sets per-binary still results in functions appearing in both. A
common cause of duplicate functions in different binaries is
the use of libraries. We argue that it is reasonable to allow

TABLE II: Example identifiers from the Body not in Train
testing partition and DIRE’s top-5 most frequent predictions.

len value new_node bytes_read

len (60%) value (28%) node (48%) size (38%)
n (6%) data (7%) child (31%) bytes_read (13%)
size (5%) val (3%) treea (0.3%) len (13%)
length (1%) name (3%) tree (0.3%) cmd_code (13%)
l (1%) key (2%) root (0.3%) read (13%)

such duplication since reverse-engineering binaries that link
against known (e.g., open source) libraries is a realistic use
case.

Nevertheless, to better understand the performance of our
system, we partition the test examples into two sub-categories:
Body in Train and Body not in Train. The Body in Train
partition includes all functions whose entire body matches at
least one function in the training set; similarly, the Body not in
Train set includes only functions whose body does not appear
in the training set. The last two rows in Table I show the
performance on these partitions. DIRE performs well on the
Body in Train test partition (85.5%). This indicates that DIRE
is particularly accurate at name prediction when code has
appeared in its training set (e.g., libraries, or code copied from
another project). DIRE is still able to exactly match 35.3% of
variable names in the Body not in Train set, indicating that it
still generalizes to unseen functions.

Table II contains example identifiers from the Body not in
Train test set, along with DIRE’s most frequent predictions.
We observe that inexact suggested names are often semanti-
cally similar to the original names. DIRE also performs best
on simple identifiers such as len and value. This is because
it is difficult to predict the exact name for complex identifiers
with compositional names. However, DIRE is still often able
to suggest semantically relevant identifiers (e.g., node, child).

RQ1 Answer: We find that DIRE is able to suggest
variable names identical to those chosen by the original
developer 74.3% of the time.

B. RQ2: Component Contributions

Table I also shows the results for models using only our
lexical or structural encoders. We find that the lexical encoder
is able to correctly predict 72.9% of the original variable
names, while a model using the structural encoder is able to
correctly predict 64.6% of the original variable names. These
simpler models still perform well, but by combining them in
DIRE we are able to achieve even better performance.

Figure 7 illustrates how DIRE can effectively combine these
models to improve suggestions. Here, the placeholders V1,
V2, and V3 are variables which should be assigned names.
The “Lexical”, “Structural”, and “DIRE” columns show the
predictions from each model, and the “Developer” column
shows the name originally assigned by the developer. In this
example, the lexical and the structural models are unable to
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1 file *f_open(char **V1, char *V2, int V3) {
2 int fd;
3 if (!V3)
4 return fopen(*V1, V2);
5 if (*V2 != 119)
6 assert_fail("fopen");
7 fd = open(*V1, 577, 384);
8 if (fd >= 0)
9 return fdopen(fd, V2);
10 else
11 return 0;
12 }

ID Lexical Structural DIRE Developer

1 file fname filename filename

2 name oname mode mode

3 mode flags create is_private

Fig. 7: Decompiled function (simplified for presentation),
suggested names, and developer-assigned names. The lexical
and structural models are unable to correctly predict the name
filename for variable 1, but DIRE can by combining them.

predict any of the original variable names, while DIRE is able
to correctly predict two of the three names.

This example also shows the contributions from each of the
submodels. For example, for V1, the lexical model predicts
file while the structural model predicts fname. Combining
the predicted subtokens generates filename, the same name
chosen by the developer. For V2, the lexical and structural
models both fail to predict mode, but note that the lexical model
does predict mode for V3. By combining the models, DIRE
instead correctly predicts mode for V2.

RQ2 Answer: Each component of DIRE contributes
uniquely to its overall accuracy.

C. RQ3: Effect of Data

To answer RQ3, we varied the size of the training data and
measured the change in performance of our models. Training
data was subsampled at rates of 1%, 3%, 10%, 20%, and 40%.
The results of these experiments are shown in Fig. 8.

Figures 8a and 8b show the change in accuracy and CER of
DIRE respectively. The size of the training data is plotted on
the x-axes, while accuracy and CER are plotted on the y-axes.
While DIRE has low accuracy on the Body not in Train set at
the lowest sampling rates, at a 1% sampling rate it is still able
to correctly select names over 40% of the time for the Body
in Train test set, suggesting that it is possible to use much
less data to train a model if the target application is reverse
engineering of libraries rather than binaries in general.

Note however that the CER of DIRE is still high at low
sampling rates. This implies that in the cases where DIRE
selects an incorrect variable name the chosen name is quite
different from the correct name. Sampling at a higher rate
dramatically decreases the CER, allowing for namings that
are closer the developers’ choices. At a sampling rate of 40%,
DIRE comes quite close to the performance of the model

trained on the full training set, with an overall accuracy of
68.2% (vs. 74.2%) and a CER of 33.6% (vs. 28.2%).

Figure 8c shows the effect of training set size on the
performance of DIRE and its component neural models on
the Body not in Train test set. Note how at sampling rates at
or below 10% the models have similar performance. In cases
where there is little training data, training time can be further
reduced by using only one of the two submodels.

RQ3 Answer: DIRE is data-efficient, performing com-
petitively using only 40% of the training data. DIRE
is also robust, outperforming the lexical and structural
models in most sub-sampling cases.

D. RQ4: Comparison to Prior Work

To answer RQ4, we compare to our prior work [21] and to
DEBIN [22], the state-of-the-art technique for predicting debug
information directly from binaries.

In our earlier work, which used a purely-lexical model
based on statistical machine translation (SMT), we were able
to exactly recover 12.7% of the original variable names
chosen by developers. In contrast, DIRE is able to suggest
identical variable names 74.3% of the time. We attribute this
improvement to two factors: 1) the improved accuracy of our
corpus generation technique, and 2) the use of a model that
incorporates both lexical and structural information.

To better understand the performance of DIRE, we also
compare to DEBIN, a different approach to generating more
understandable decompiler output. DEBIN uses CRFs to learn
models of binaries and directy generate DWARF debugging
information for a binary, which can be used by a decompiler
such as Hex-Rays.

The debugging information generated by DEBIN contains
predicted identifiers, types, and names. To choose a variable
name, DEBIN proceeds in two stages: it predicts which mem-
ory locations correspond to function-local arguments and vari-
ables, and then predicts names for the variables it identified. In
contrast, DIRE leverages the decompiler to identify function
offsets and local variables.

Building on top of the decompiler helps DIRE maintain
the quality of pseudocode output. An example is shown in
Fig. 9, which contains a C function for converting between a
number a1 and its Gray code representation in a2 bits [43].
Figure 9a shows the output of Hex-Rays when passed a binary
with no debug information. Although these variables do not
have meaningful names, it is clear that gray is a function that
takes two arguments and returns a long.

Figure 9b shows the output of Hex-Rays using debugging
information generated using DEBIN’s bundled model.3 We
observe that DEBIN does not accurately recover variable
names in this case, perhaps since its model was trained on
a different set of code.

3https://files.sri.inf.ethz.ch/debin models.tar.gz, accessed April 10, 2019
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(b) CER of DIRE (lower is better).
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(c) Accuracy of each neural model on the
Body not in Train partition.

Fig. 8: The impact of training corpus size on the performance of DIRE. Figures (a) and (b) show how increasing the amount of
training data improves the performance of DIRE; (c) shows the performance of each of the submodel as training size changes.

1 long gray(unsigned a1,
2 int a2) {
3 unsigned v3, v4;
4 int v5;
5 if (a2 >= 0)
6 return a1 ˆ (a1 >> 1);
7 v5 = 1;
8 v4 = a1;
9 while (1) {
10 v3 = v4 >> v5;
11 v4 ˆ= v4 >> v5;
12 if (v3 <= 1 ||
13 v5 == 16)
14 break;
15 v5 *= 2;
16 }
17 return v4;
18 }

(a) Hex-Rays.

1 void gray() {
2 unsigned v0;
3 int v1;
4 unsigned i, v3;
5 int x;
6 if (v1 < 0) {
7 x = 1;
8 v3 = v0;
9 while (1) {
10 i = v3 >> x;
11 v3 ˆ= v3 >> x;
12 if (i <= 1 ||
13 x == 16)
14 break;
15 x *= 2;
16 }
17 }
18 }

(b) Hex-Rays w/ DEBIN.

Fig. 9: Effects of incorrect debugging information on decom-
piler output. The gray function computes the Gray code of a1
in a2 bytes [43]. On the left, (a) is the output of Hex-Rays
without debugging symbols; it is able to correctly identify
the arguments and return type. On the right, (b) is the output
with incorrect DWARF information generated by DEBIN: note
missing arguments, return statements, and incorrect type.

However, this example also surfaces a fundamental limita-
tion of the DEBIN approach: both the inferred structure and the
types of the variables in the program have changed. This oc-
curs because Hex-Rays prioritizes debugging information over
its own analyses and heuristics. In this case, the debugging
information generated by DEBIN does not indicate a return
value of the gray function nor any arguments, misleading the
decompiler. By starting at the point shown in Fig. 9a DIRE
maintains structure and typing even in the presence of incorrect
predictions.

To evaluate our performance compared to DEBIN, we
trained it on binaries in our dataset. Due to time restrictions,
we found it impractical to train DEBIN on the full dataset.
For a fair comparison, we instead subsampled our training set
at 1% and 3% and trained both DEBIN and DIRE on these

TABLE III: Comparison of DIRE and DEBIN trained on 1%
and 3% of our full corpus of 164,632 binaries. All accuracy
values are percentages, higher accuracy is better.

1% of corpus 3% of corpus
DIRE DEBIN DIRE DEBIN

Training Time (h) 1.8 13.3 6.1 17.2

Accuracy – Overall 32.2 2.4 38.4 3.9
Accuracy – Body in Train 40.0 3.0 47.2 4.8
Accuracy – Body not in Train 5.3 0.6 8.6 0.7

sets.4 After training, we ran DEBIN on binaries in our test
set, extracted names using our corpus generation pipeline, and
measured the accuracy of predictions. Our results are shown
in Table III.

We find that DIRE is able to outperform DEBIN at all
sampling sizes. When trained on 1% of the corpus DIRE is
able to exactly recover 32.2% of all identifiers, while DEBIN
recovers 2.4%. On the 3% partition, DIRE is able to recover
38.4% of names, while DEBIN is able to recover 3.9%. The
lower performance of DEBIN we observed could be attributed
to compound error: in addition to variable names themselves,
DEBIN must predict what memory locations correspond to
variables. If a memory location is not predicted to be a
variable, DEBIN cannot assign it a name.

We also note that we were able to train DIRE much
faster than DEBIN, although DIRE is GPU-accelerated, while
DEBIN as distributed is limited to execution on the CPU.

RQ4 Answer: DIRE is a more accurate and more
scalable technique for variable name selection than
other state-of-the-art approaches.

VI. THREATS TO VALIDITY

When collecting code and binaries to generate our corpus,
we did no filtering of the repositories beyond ensuring that

4The 3% subsampling we used is a slightly larger training set than the
3,000 binaries used to train DEBIN in the original paper [22].
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they were written in C and built. It is possible that the code
we collected does not accurately represent the types of binaries
that are typically targets of reverse-engineering effort.

Additionally, we did not experiment with binaries compiled
with optimization enabled, nor did we experiment with inten-
tionally obfuscated code. It is possible that DIRE does not
perform as well on these binaries. However, reverse engineer-
ing of these binaries is a general challenge for decompilers,
and we do not believe that our technique applies exclusively
to the test code we experimented with.

Although we have found that it is possible to uniquely
identify variables in Hex-Rays based on the code offsets where
it is accessed, we have found that other decompilers do not
have this property. In particular, our approach did not work
well with the newly released Ghidra decompiler [12]. One
of the primary causes is the way that Hex-Rays and Ghidra
utilize debug symbols to name variables. Hex-Rays uses debug
symbols in a very straight-forward manner, and generally
does not propagate local names outside of their function.
Ghidra, however, will actually propagate variable names at
some function calls. For example, if an unnamed variable is
passed as an argument to a function whose parameter has a
name, in some cases Ghidra will rename the variable to match
the parameter’s name. This behavior is problematic for corpus
generation because it does not reflect the developer’s intended
names.

A new approach for corpus generation would be required for
compatibility with Ghidra, but Ghidra’s open-source nature (as
opposed to Hex-Rays’ closed model) allows potential modifi-
cation of the decompiler, including disabling the problematic
propagation of names at function calls. We leave Ghidra
integration to future work.

VII. CONCLUSION

Semantically meaningful variable names are known to in-
crease code understandability, but they generally cannot be
recovered by decompilers. In this paper, we proposed the
Decompiled Identifier Renaming Engine (DIRE), a novel,
probabilistic technique for variable name recovery which uses
both lexical and structural information. We also presented a
technique for generating corpora suitable for training DIRE,
which we used to generate a corpus from 164,632 unique x86-
64 binaries. Our experiments show that DIRE is able to predict
variable names identical to the names used in the original
source code up to 74.3% of the time.
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