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Abstract—Automatic Program Repair (APR) is an emerg-
ing and rapidly growing research area, with many techniques
proposed to repair defective software. One notable state-of-
the-art line of APR approaches is known as semantics-based
techniques, e.g., Angelix, which extract semantics constraints, i.e.,
specifications, via symbolic execution and test suites, and then
generate repairs conforming to these constraints using program
synthesis. The repair capability of such approaches—expressive
power, output quality, and scalability—naturally depends on the
underlying synthesis technique. However, despite recent advances
in program synthesis, not much attention has been paid to assess,
compare, or leverage the variety of available synthesis engine
capabilities in an APR context.

In this paper, we empirically compare the effectiveness of
different synthesis engines for program repair. We do this by
implementing a framework on top of the latest semantics-based
APR technique, Angelix, that allows us to use different such
engines. For this preliminary study, we use a subset of bugs in
the IntroClass benchmark, a dataset of many small programs
recently proposed for use in evaluating APR techniques, with
a focus on assessing output quality. Our initial findings suggest
that different synthesis engines have their own strengths and
weaknesses, and future work on semantics-based APR should
explore innovative ways to exploit and combine multiple synthesis
engines.

Index Terms—Automated Program Repair, Program Synthesis
Engine, Empirical Study

I. INTRODUCTION

Bugs are prevalent in software development, incurring a

significant cost to software production in both commercial

and open-source software. Fixing bugs is thus crucial to main-

taining software quality. However, bug fixing is known to be

difficult, time-consuming, laborious, and very expensive [22].

Hence, automated program repair (APR) techniques that can

help developers tackle the bug-fixing challenge would be of

tremendous value.

The once-futuristic idea of APR has been gradually materi-

alizing in the form of numerous recent research advances [15],

[16], [11], [12], [13], [9], [7], [14]. APR techniques can

be generally classified into two families, heuristic versus

semantics-based, each with different strengths and weaknesses.

Heuristic APR techniques typically employ various syntactic

mutation operators to produce large populations of possi-

ble candidates bug-fixing patches, and then search for the

best one with respect to an optimization function (typically,

though not exclusively, patched program behavior on a set

of test cases). Meanwhile, semantics-based techniques extract

semantics constraints, i.e., specifications from behavior on test

suites, and leverage program synthesis to synthesize repaired

expressions that conform to these extracted specifications.

Excitingly, semantics-based approaches have recently been

shown to scale to repair bugs in large, real-world programs,

comparable to those targeted by heuristic approaches [16]. In

this work, we focus on semantics-based APR approaches.

Naturally, one of the main factors that influence the success

of semantics-based APR is the power of the underlying pro-

gram synthesis approach. Output patch quality is an especially

pressing concern: Given that the specifications extracted by

semantics-based approach are only partial, synthesis may

generate a “plausible” but not fully correct solution—that is,

a patch that satisfies the given specification, but does not

generalize to the full desired specification. This phenomenon

has been explored for heuristic approaches [21], but to the

best of our knowledge has not been investigated for semantics-

based approaches.

In this paper, we study the performance of several pro-

gram synthesis engines for semantics-based APR. We propose

a novel mechanism for integrating syntax-guided synthesis

(SyGuS) into a semantic repair technique, and then show

that the different synthesis approaches do indeed perform

differently in the context of program repair. In particular, the

synthesis approach employed in Angelix [16], the state-of-

the-art in semantics-based APR, may not be best for all bugs.

Instead, different synthesis techniques can complement one

another, increasing the effectiveness of semantics-based APR.

We argue that semantics-based APR can and should make use

of multiple synthesis engines, and suggest future research on

designing ways to forge multiple synthesis engines to produce

an approach that can fix more bugs with less patch overfitting.

We also suggest future research on benchmarks and metrics

for synthesis in the context of APR, beyond the traditional

benchmarks specialized for synthesis task alone [1].

The remainder of this paper is structured as follows. Sec-

tion II explains background on semantics-based APR. Sec-

tion III describes our pluggable framework built on top of

Angelix that can use different synthesis engines for APR.

Experiment results are presented in Section IV, followed by

threats to validity in Section IV-C. Section V concludes the

paper and mentions future directions.
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II. BACKGROUND

A. Angelix: A State-of-the-Art Semantics-Based APR

To the best of our knowledge, Angelix is the most recently-

proposed state-of-the-art semantics-based program repair ap-

proach [16]. Angelix follows a now-standard model for test-

case-driven program repair, taking as input a program and a

set of test cases, at least one of which is failing. The goal

is to produce a small set of changes to the input program

that corrects the failing test case while preserving the other

correct behavior. Like many APR techniques, Angelix first

uses fault localization, e.g., Ochiai [2] to identify likely-buggy

expressions. Angelix then performs a “controlled” symbolic

execution, wherein symbolic variables are installed only at

chosen buggy expressions, to collect path constraints.1 Angelix

uses the constraints to extract value-based specifications for

each of the candidate buggy expressions, which contain possi-

ble concrete values of variables and expressions that satisfy the

constraints, thereby making all tests pass. The extracted value-

based specifications take the form of a precondition on the

values of variables before a buggy expression is executed and

a postcondition on the values after that expression is executed.

The precondition is extracted by using forward analysis on

the test inputs to the point of the buggy expression; The

postcondition is extracted via backward analysis from the

desired test output. The problem of program repair can now

be reduced to a synthesis problem: Given a precondition,

Angelix synthesizes an expression that satisfies the postcondi-

tion. Angelix uses a slightly modified version of oracle-guided

component-based synthesis [6] for this task. To minimize the

size of the change, Angelix eagerly preserves the structure of

the original expression, leveraging Partial MaxSMT [15]. This

repeats until a repair that causes the program to pass all tests

is synthesized.

B. Syntax-Guided Program Synthesis Engines

The primary goal of program synthesis is to automatically

generate an implementation of a program that provably satis-

fies a given specification. Recent years have seen many pro-

posed program synthesis approaches [3], [18], [17], wherein

syntax-guided synthesis (SyGuS) [3] is arguably one of the

most notably successful approaches. Rather than trying to

synthesize a program with arbitrary syntax, SyGuS engines use

a restricted grammar to describe the syntactic space of possible

implementations, reducing the search space for the correct

implementation. We first present the generic grammar of

SyGuS’s input and output, and then briefly explain a selection

of existing, publicly-available SyGuS engines: enumerative,

stochastic, symbolic, and CVC4 [3], [20].2

The grammar of SyGuS’s input and output is briefly de-

scribed in Figure 1. An expression in SyGuS can be either

an integer or a boolean expression. An integer expression

1Angelix can target multiple buggy expressions at once and scales with
the number of locations considered; we explain the process with respect to a
single buggy expression for clarity, but the process generalizes naturally.

2We refer interested readers to [3], [20] for additional details.

contains constants, variable names, addition, or subtraction of

two integer types. A boolean expression is defined similarly.

A SyGuS synthesis technique will then search for solutions

that conform to its provided grammar only. We note that a

grammar for each synthesis problem can vary, e.g., have fewer

permitted rules than those rules defined in Figure 1, depending

on particular scenarios, as we will explain in Section III.

Figure 2 depicts an example script that instructs a SyGuS

synthesizer to synthesize a function named leq, according

to the grammar described by the synth-fun keyword, in the

domain of Linear Integer Arithmetic (denoted as LIA). This

function has two arguments of type integer, and a boolean

return type. Integer and boolean expressions are constrained as

shown in the example grammar (Figure 1). The specification of

this function is then constrained by the input-output examples

expressed via the constraint keyword. The first constraint says

that if the value of x is 1, and the value of y is 2 (precondition),

then the function leq over x and y will return an expression

evaluated to true (postcondition). In this example, a SyGuS

synthesizer could return an implementation of the function leq
as x ≤ y.

Different SyGuS engines then employ different search

strategies to generate or synthesize a solution conforming

to such a specification. The enumerative engine generates

candidate expressions in increasing size, and leverages the

specification to prune the search space of possible candidates.

The stochastic search engine searches for a correct implemen-

tation among the search space using an optimization function

indicating a probability that a candidate satisfies the provided

specification. The symbolic approach uses a constraint solver

both to search for a candidate expression satisfying a set

of concrete input examples, and to verify the validity of an

expression for all possible inputs. CVC4 is the first synthesizer

implemented inside an SMT solver, via a slight modification

of the solver’s background theory. To synthesize an imple-

mentation that satisfies all possible inputs, it translates the

challenging problem of solving universal quantifier over all

inputs into showing the unsatisfiability of the negation of the

given specification. It then synthesizes a desired solution based

on the unsatisfiability proof. Recent competitions of SyGuS

techniques showed that CVC4 and enumerative engines are

the among the best engines on benchmarks specialized for

assessing SyGuS [1].

IntExpr := N | Var | IntExpr BinOp IntExpr
BinOp := + | −
BoolExpr := true | false | Var | ¬ BoolExpr

| IntExpr RelOp IntExpr | BoolExpr LogOp BoolExpr |
IntExpr EqOp IntExpr | BoolExpr EqOp BoolExpr |

RelOp := > | < | ≤ | ≥
LogOp := ∧ | ∨
EqOp := =

Fig. 1: Generic SyGuS’s Input and Output Grammar
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( set−logic LIA)
(synth−fun leq ((x Int ) (y Int ) ) Bool
(( Start Int (1 2 5 x y

(+ Start Start )
(− Start Start ) ) )

( StartBool Bool (
(and StartBool StartBool )
(or StartBool StartBool )
(not StartBool )
(≤ Start Start)
(< Start Start) ) )

) ) ; end definition of function leq
(declare−var x Int )
(declare−var y Int )
( constraint (⇒ (and (= x 1) (= y 2)) (= (leq x y) true)))
( constraint (⇒ (and (= x 2) (= y 2)) (= (leq x y) true)))
( constraint (⇒ (and (= x 5) (= y 2)) (= (leq x y) false)))
(check−synth)

Fig. 2: Example of a SyGuS Script

III. PLUGGABLE FRAMEWORK FOR SEMANTICS-BASED

PROGRAM REPAIR

In this section, we describe our framework that allows

Angelix to use different SyGuS synthesizers.3 We explain

our translation from Angelix’s value-based specifications to a

SyGuS script, and our heuristic to allow SyGuS synthesizers

to generate solutions that are minimally different from the

original buggy expression, based on the given value-based

specifications.

From value-based specifications to SyGuS script: Angelix

infers a value-based specification for each buggy location/-

expression, that it then uses to inform the synthesis of a

possibly multi-line patch. We need to translate this value-based

specification into a SyGuS synthesis problem, wherein each

of the locations under repair corresponds to a function to be

synthesized with respect to its corresponding specification. We

must further map the output of successful SyGuS synthesis

back to its corresponding buggy locations in the original

program to construct a repair patch.

Our translation proceeds as follows: Each buggy location

is associated with a to-be-synthesized function. Each function

is constrained by its own grammar, which we “dynamically”

generate based on the value-based specification, the original

buggy expression, and synthesis level.4 Consider the example

in Figure 2. If the original buggy expression is x == y,

the test cases/specification for this expression is as shown

in Table I, and the synthesis level is “integer-constants” and

“alternatives”, we generate the grammar for the function

corresponding to this expression as in Figure 2. This function

takes as input two integer arguments x and y, and returns

an expression evaluated to a boolean type. Since the function

leq requires both types Int and Bool, we generate the defi-

nition of both types in the function’s grammar. The integer

expression in this grammar permits constants: 1, 2, and 5, as

3Our framework is built on top of Angelix, and is available here:
https://github.com/xuanbachle/syntax-guided-synthesis-repair/.

4At each synthesis level, particular set of components will be permitted in
synthesis task via the dynamically generated grammar.

taken from the specification, and variable x and y as taken

from the arguments. The boolean expression in this grammar

allows operators ≤ and <, that are alternatives for the buggy

operator == in the original buggy expression, following the

“alternatives” synthesis level. The set of constraint statements

is generated by traversing the specification, in which each

constraint encodes the desired behavior of each test case

(recall that the specification contains possible concrete values

of variables and expressions that make all tests pass).

Constructing likely closest solution to original buggy
expression: Angelix uses Partial MaxSMT to minimize the

amount of behavioral change in a produced repair, in the

interest of increasing the probability of a higher-quality patch.

SyGuS synthesis techniques, unfortunately, can not inherently

handle this problem directly. Thus, we heuristically constrain

candidate repairs in the tranlation from the value-based specifi-

cation to a SyGuS. Two ways to do this are to: (1) Dynamically

force the functions’ grammar to mimic the structure of the

original expression, or (2) identify subexpressions that are

unlikely to change in the original expression over the course

of the repair, to help reduce the amount of new code to be

synthesized. We adopt the second approach, leaving the first

approach for future work.

To find subexpressions that are unlikely to change in the

original expression e, we take into account the value-based

specifications, which contains values of variables involved in e.

That is, we filter out subexpressions in e that involve variables

whose values do not change in the specification. To illustrate,

consider an original buggy expression e: (x ≤ 5)∧ (y == 2),
with a specification as described in Table I, and a SyGuS

script shown in Figure 2. The expected correct expression that

satisfies the specification in Table I is (x ≤ 2) ∧ (y == 2).
Without any optimization, a SyGuS synthesizer could return

the expression: x ≤ 2 as a solution. Although this solution

satisfies the specification, it does not minimally change the

behavior of the original expression e. Our optimization, on

the other hand, identifies that the subexpression y == 2
is very unlikely to be changed, since the value of y is

unchanged through out the specifications. Our optimization

further identifies that the expression x ≤ 5 is likely to be

changed, since the value of x changes, and also the value of its

“neighbor” (the constant 5 involved in the same operator with

x) never changes through out the specification. We therefore

instruct a SyGuS synthesizer to synthesize a function involving

only variable x, and various constants. After receiving the

result from the synthesizer, such as the expression x ≤ 2, we

map it back to original expression e, leaving the unchanged

subexpressions (y == 2) intact. This way, we can generate the

expected correct expression, close to the original expression

e.

More formally, we define subexpression(s) esub in an orig-

inal buggy expression that are unlikely to be changed if esub
involves constants or variables whose values are unchanged

throughout the specification. If esub is composed of several

subexpressions eisub, each eisub must also be unchanged. This
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TABLE I: Value-based specifications for expression: x == y

Test # Value of x Value of y Expected Output

1 1 2 true

2 2 2 true

3 5 2 false

TABLE II: Subset of IntroClass Dataset. Each column shows

the name of the program and the numer of versions of that

program that fail on black-box tests.

Median Smallest Digits

61 67 60

Total: 188 programs

way, we eagerly identify the largest possible set of unchanged

subexpressions in the original buggy expression, reducing

the burden of synthesizing large expression on the SyGuS

synthesizers.

IV. EXPERIMENTS AND ANALYSIS

A. Benchmark Dataset and Evaluation Metrics

We evaluate four SyGuS synthesis engines including enu-
merative, stochastic, symbolic, and CVC4, and Angelix’s Par-

tial MaxSMT-based synthesis engine, on programs from the

IntroClass benchmark [10], which consists of student-written

programs with defects submitted as homework to a freshman

programming class. Each program in the benchmark has two

independent high-coverage test suites: a black-box test suite

written by the course instructor, and a white-box test suite

generated by the test generation tool KLEE [4] on a reference

solution. The dataset is described in Table II.

Although IntroClass contains small programs, it is a par-

ticularly suitable benchmark for assessing repair quality via

overfitting, because of the two high-coverage test suites as-

sociated with each program [21]. Our experimental data is

a subset of the IntroClass benchmark, because Angelix can

only handle programs whose output are of boolean, integer,

or character types. We therefore do not consider IntroClass

programs whose outputs cannot be handled by Angelix, e.g.,

those with string output.

For each of the 188 programs, we run each synthesis

technique on the black-box tests to generate repairs, and use

the white-box tests as held-out tests to assess the quality of

generated repairs. If a generated repair does not pass all of

the held-out tests, we say that it overfits to the training test

cases and is not fully general; this is a proxy for repair quality

(or lack thereof). We assess the synthesis techniques based on

success count, defined as the number of programs for which a

technique generates a patch that generalizes/does not overfit.

Higher is better.

B. Results

Success Counts, Overlaps, and Union: Figure 5 shows the

number of non-overfitting patches generated by Angelix using

each of the synthesis engines. Figure 5 shows that Angelix’

default synthesis engine can fix more bugs than any other

SyGuS techniques. Our observation is that taking into ac-

count the original buggy expression to generate minimal fixes

gives Angelix an advantage over SyGuS techniques, especially

when the buggy expression is large. This suggests that future

improvements of SyGuS techniques should make use of the

original buggy expression rather than trying to synthesize a fix

from scratch. Interestingly, the results also show that Angelix’s

default synthesis engine alone is not the best for all bugs.

For example, there are 7 non-overfitting patches generated by

CVC4 that Angelix cannot produce. Overall, combining the

results of all synthesis engines together could increase the

success by 50%, as compared to Angelix alone. This suggests

an interesting angle for future research in semantics-based

APR, whereby successfully forging many synthesis techniques

would potentially enhance repair capability of APR.

Case studies: We now show case studies where SyGus engines

outperform Angelix’s default synthesis technique. Figure 3

depicts an example from a median program, which attempts

to find the median of three integers. A correct patch for this

bug is to replace line 4 with a statement at line 6; this is the

patch generated by the CVC4 and enumerative SyGuS engines.

The “plausible” but overfitting patch generated by Angelix’s

synthesis engine is depicted at line 5, which replaces the

variable small with a constant 6. This patch forces a particular

set of tests to pass, but will fail on a second set of tests. We

believe that this overfitting issue in Angelix’s synthesis engine

is due to the fact that it does not force generalization during

synthesis process, where a generalized solution should involve

as small number of constants as possible [5]. SyGuS engines,

on the other hand, are more flexible in forcing generalization

by simply emphasizing permitted constants after variables in

the grammar.

1 if (num1 > num2) {...}
2 else{
3 big = num2;
4 − small = num2;
5 + small = 6; // by Angelix
6 + small = num1 // by SyGuS
7 }

Fig. 3: Patches generated by Angelix’s synthesis engine and

SyGuS engines for a median program

Figure 4 shows a defect from a smallest program, which

returns the smallest of four integer numbers. A correct patch,

generated by all four SyGuS techniques, is to replace the

incorrect assignment at line 2 with the correct assignment at

line 3. Despite the simplicity of the defect, Angelix could not

generate any patch for it. The SyGus techniques, with our

heuristic, on the other hand, identify which variables should

be involved in the synthesis process, reducing the search space

for correct solutions.

426



1 else if ((num4 <= num1) && (num4 <= num2) && (num4 <= num3
)) {

2 − num smallest = num1;
3 + num smallest = num4; // by all 4 SyGuS techniques
4 printf (”%d\n”, num smallest);
5 }

Fig. 4: Correct Patch generated SyGuS engines for a smallest

program.

Fig. 5: Non-overfitting patches generated by Angelix, CVC4,

Enumerative, Stochastic, and Symbolic synthesis engines.

C. Threats to Validity

Threats to internal validity relate to errors in our imple-

mentation and experiments. There could be hidden errors

that we did not notice despite our effort on rechecking our

implementation and experiments. Threats to external validity

correspond to the generalizability of our findings. We have

analyzed 188 bugs from 3 different C programs that have been

used to evaluate past search-based APR techniques, e.g., [21].

More programs with real bugs would further help mitigate

this threat. Threats to construct validity correspond to the

suitability of our evaluation metrics. We use success count to

assess the synthesis techniques. This is the main metric used

in prior studies [21], [19]. There are other criteria that could

help in the assessment as well, e.g., time needed for repair.

We leave the consideration of other criteria to a future work.

V. CONCLUSION AND FUTURE WORK

Semantics-based APR approaches have shown promising

results, e.g., by generating high-quality patches for software

bugs in large open-source systems. The strengths of such

approaches come from the advances of many other fields,

especially program synthesis, which plays a crucial role. Given

that specifications inferred via test suites are incomplete, pro-

gram synthesis techniques employed for repair may generate

“plausible” but insufficiently general, or correct solutions,

depending at least in part on the strategies behind the un-

derlying synthesis. In this paper, we performed the first study

on the effectiveness of program synthesis techniques from the

program repair point of view. We showed that the existing

synthesis technique used for program repair is not best for all

cases. Instead, forging the results of many synthesis techniques

together can increase the effectiveness of program repair, e.g.,

generally fixing more bugs, by 50%.

Beyond our empirical results on synthesis techniques, we

suggest untapped potential for future research in semantics-

based APR, such as in designing ways to forge many synthesis

techniques into a more effective approach for APR. We

also suggest that APR techniques and benchmarks can serve

as a way for assessing synthesis techniques’ strengths and

weaknesses. Additionally, predicting effectiveness of synthesis

techniques to suggest the best technique for APR in particular

scenarios, as similarly suggested by [8], would also be an

interesting future work. We also plan to strengthen our study

by expanding our dataset with more bugs from real-world

software. This is possible since our approach is built upon

Angelix, which has shown its good scalability [16].
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