
Empirical Study on Synthesis
Engines for Semantics-based

Program Repair

Xuan Bach D. Le1, David Lo1, Claire Le Goues2
1School of Information Systems,

Singapore Management University
2School of Computer Science,

Carnegie Mellon University
{dxb.le.2013,davidlo}@smu.edu.sg

clegoues@cs.cmu.edu
1

SE@CMU is recruiting graduate
students!

•  Send us your awesome undergrads!
•  Tell them to check the box next to “PhD in

Software Engineering”, so we’re certain to
see them!

•  Early deadline: December 1
•  Final, we-mean-it deadline: December 15.

2

Automatic patch generation seeks to
improve software quality.
•  Bugs in software incur tremendous

maintenance cost.

•  Developers presently debug and fix bugs
manually.

•  Automated program repair:

In 2006, everyday, almost 300 bugs appear in Mozilla
[…] far too much for programmers to handle

3

APR = Fault Localization + Repair Strategies

Semantics-based repair extracts value-based
specifications using tests + symbolic
execution, constructs patches using synthesis.

Program
Synthesis

Specs Pases
all

tests?

Yes

No

Mechtaev et al.. Angelix: scalable multiline program patch synthesis
via symbolic analysis. In ICSE '16.

Our contributions:

•  Pluggable framework to assess many
types of syntax-guided program synthesis
in the core of Angelix.

•  Evaluation of different synthesis
techniques for semantic program repair.
– Key finding: effectiveness of different

synthesis engines varies!

5

Syntax Guided Program Synthesis
(SyGuS)

: use a restricted grammar to
describe syntactic space of possible
solutions

•  Use different search techniques to search
for solutions conforming to provided
grammar

•  We evaluate: Enumerative, Stochastic,
Symbolic, and CVC4

Example of Buggy Program

bool min(int x, int y){
 bool cond = x < y;
 if(cond){

 return true;
 }else{

 return false;
 }
}

Test # Value
of x

Value
of y

Expected
output

1 1 2 true
2 2 2 true
3 5 2 false

FAILED

7

Selective Symbolic Execution

bool min(int x, int y){
 bool cond = α;
 if(cond){

 return true;
 }else{

 return false;
 }
}

Replace buggy
expression by

symbolic variable

ü  Switch to symbolic execution when
necessary, collect path conditions.

ü  Infer specs for each test

x y expected

2 2 true

PC1: α & x = 2 & y = 2 &
expected output[true] = actual output[true]

PC2: (not α) & x = 2 & y = 2 &
expected output[true] = actual output[false]

8

Extract Value-based Specifications

PC1: α & x = 2 & y = 2 &
expected output[true] = actual output[true]

PC2: (not α) & x = 2 & y = 2 &
expected output[true] = actual output[false]

Satisfiable

Unsatisfiable

Model: x = 2 & y = 2 & α = true

Pre-condition: x = 2 & y = 2 Post-condition: α = true

Synthesize α over x and y,
permitting a restricted set of
components, satisfying spec

9

Hard constraints on functionality + soft
constraints on form + PartialMax SMT =

minimal repair
10

(mathy details elided for brevity.)

Public domain, CC0,

Our framework converts specs
inferred by Angelix to generic SyGuS
format.

Value-based
Specs

SyGuS
Engine 1

SyGuS
format Patch SyGuS

Engine 2

Optimizations for
generating minimal patch

11

Experiments

•  188 programs from IntroClass benchmark
– Use black-box tests for repair, white-box tests

for testing quality of generated patches.
– Only report the patches that generalize to the

held-out tests!
•  Synthesis techniques that help generate

more correct patches are better
•  Evaluate on: Enumerative, Stochastic,

Symbolic, CVC4, and Angelix’s synthesis
engine

12

Synthesis techniques vary in the
bugs they can correctly address.

13

Summary

•  We evaluate the effectiveness of different
synthesis techniques in the context of
program repair, finding:
– Performance of synthesis techniques varies
– Forging results of synthesis techniques

increases effectiveness of program repair,
e.g., fix more bugs

•  We plan to develop more effective
synthesis techniques for repair.

14

Code: https://github.com/xuanbachle/syntax-guided-synthesis-repair

