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Abstract—Effective automated program repair techniques
have great potential to reduce the costs of debugging and
maintenance. Previously proposed automated program repair
(APR) techniques often follow a generate-and-validate and test-
case-driven procedure: They first randomly generate a large pool
of fix candidates and then exhaustively validate the quality of the
candidates by testing them against existing or provided test suites.
Unfortunately, many real-world bugs cannot be repaired by
existing techniques even after more than 12 hours of computation
in a multi-core cloud environment. More work is needed to
advance the capabilities of modern APR techniques.

We propose a new technique that utilizes the wealth of bug
fixes across projects in their development history to effectively
guide and drive a program repair process. Our main insight is
that recurring bug fixes are common in real-world applications,
and that previously-appearing fix patterns can provide useful
guidance to an automated repair technique. Based on this insight,
our technique first automatically mines bug fix patterns from
the history of many projects. We then employ existing mutation
operators to generate fix candidates for a given buggy program.
Candidates that match frequently occurring historical bug fixes
are considered more likely to be relevant, and we thus give them
priority in the random search process. Finally, candidates that
pass all the previously failed test cases are recommended as likely
fixes. We compare our technique against existing generate-and-
validate and test-driven APR approaches using 90 bugs from 5
Java programs. The experiment results show that our technique
can produce good-quality fixes for many more bugs as compared
to the baselines, while being reasonably computationally efficient:
it takes less than 20 minutes, on average, to correctly fix a bug.

Keywords—Automated Program Repair, Mutation Testing,
Graph Mining

I. INTRODUCTION

Bugs are prevalent in software development. Mature com-
mercial software systems regularly ship with both known
and unknown defects [31], despite the support of multiple
developers and testers typically dedicated to such projects [3].
To maintain software quality, bug fixing is thus inevitable
and crucial. Yet, bug fixing is notoriously a difficult, time-
consuming, and labor-intensive process, dominating developer
time [51] and the cost of software maintainance. Many defects,
including security-critical defects, remain unaddressed for ex-
tensive periods [19], and the resulting impact on the global
economy is measured in the billions of dollars annually [48],
[10]. There is a dire need to develop automated techniques to
ease the difficulty and cost of bug fixing in practice.

To address the above-mentioned need, substantial recent
work proposes techniques for Automated Program Repair
(APR). These techniques seek to automatically fix bugs by

producing source-level patches. For example, GenProg [28]
uses a Genetic Programming [26] heuristic to conduct a search
for a patch that causes the input program to pass all given
test cases (including at least one that initially failed, exposing
the defect to be addressed). Subsequently, Kim et al. extend
the GP approach in Pattern-based Automatic program Repair
(PAR), which uses bug fix templates manually learned from
existing human-written patches [25] to guide the creation of the
potential patches. These techniques are instructive examples of
generate-and-validate and test-case-driven approaches to defect
repair: They generate many candidate patches, and validate
them against a set of test cases. The process is repeated
many times, with a fitness score computed for each candidate
patch based on the number of test cases that the associated
modified program passes or fails. This score guides subsequent
iterations, and thus the way the techniques traverse the search
space of candidate repairs.

Despite the promise of existing APR techniques, current
approaches are limited in several key ways [43]. To truly
improve the quality of real-world software as well as the
experience of modern software developers, an ideal technique
must be both effective (i.e, able to fix many real bugs) as well
as efficient (i.e., able to do so in a short amount of time). Even
merely plausible patches—those that lead the buggy program
to pass the provide test cases, but that are not necessarily
globally correct as judged by an informed programmer—may
take more than 10 hours to generate, and the resulting patches
may still be incorrect [25], [43]. Although the risk of low
quality patches can be mitigated by using more comprehensive
test suites to guide the search process, even with full-coverage
test suites, existing test-guided techniques may be susceptible
to overfitting [47]. That is, produced patches may fail to
functionally generalize beyond the test suite used to produce
them. Although the current APR state-of-research is still in its
infancy, it is important to work towards both effectiveness and
efficiency to allow APR to be ultimately adopted.

In this paper, we propose a novel technique for history-
based program repair. Like several previous methods, our
technique makes use of a stochastic search process to generate
and then validate large numbers of patches, seeking one that
causes previously-failing tests to pass. The most important fea-
ture differentiating our new technique from the previous work
is that it evaluates the fitness or suitability of a candidate patch
by assessing the degree to which it is similar to prior bug-fixing
patches, taken from a large repository of real patches. This
is in contrast with previous search-based approaches, which
by and large use input test cases to assess intermediate patch
suitability. Our intuition is that bug fixes are often similar in
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nature and past fixes can be a good guide for future fixes. This
has at least partially informed a number of previous studies
and approaches [7], [17], [25], [33]. The important novelty in
our technique is that, instead of simply using previous fixes to
inform the construction of candidate patches, we use fix history
to help assess their potential quality, or fitness. We expect that
the history-driven approach mitigates the risk of overfitting to
the test suite, because it does not directly use the test suite
score to guide individual selection for later iterations. This
increases the probability that the resulting patches generalize to
the desired program specification. Moreover, using the history
to guide the repair search can also imbue the APR process
with history-informed “common sense” to identify plausible
but clearly—to humans—nonsensical patches.

To illustrate, consider the buggy code snippet in Figure 1,
taken from Math version 85 in Defect4J benchmark [22]. This
buggy snippet throws a ConvergenceException when
one of the test cases is executed. One low-quality way to “fix”
the problem that eliminates the symptom, and causes the test
case to trivially pass, simply deletes the throw statement.
However, this would be a nonsensical solution, and is not
consistent with the patch the human developer committed
for the same defect. Unfortunately, prior generate-and-validate
and test-case-driven APR techniques cannot identify such a
solution as nonsensical. In our history based approach, on the
other hand, the fact that such edits very rarely appear in the
historical bug fix data means that it receives a very low score
in the search process. In this way, our technique is more likely
to avoid plausible but nonsensical patches.

//Human fix: fa * fb > 0.0
if (fa * fb >= 0.0 ) {

throw new ConvergenceException("...")
}

Fig. 1: Bug in Math version 85

Our history-based APR technique works in three phases:
(1) bug fix history extraction (2) bug fix history mining and
(3) bug fix generation. The first two phases are conducted
in advance of any particular bug-fixing effort. In the first
phase, our technique mines historical bug fixes from revision
control systems of hundreds of projects in GitHub. In the
second phase, our technique identifies a clean set of data,
seeking to find frequently appearing or common bug fixes, and
infering a common representation to capture many similar such
bug fixes. Bug fixes are represented as change graphs, which
have the benefit of being generic and able to capture various
kinds of changes along with their contexts. These change
graphs, along with their frequencies, are used as a knowledge
base for the third phase. In the third phase, our technique
iteratively generates candidate patches, ranks them based on
the frequency with which their constituent edits appear in the
knowledge base inferred in the second phase, and returns a
ranked list of plausible patches that pass all previously failed
test cases as recommendations to developers.

We have evaluated our solution on 90 real bugs from 5
Java programs. We compare our technique against GenProg
and PAR. GenProg is a popular generate-and-validate and test-
case-driven APR technique that with a publicly available Java

implementation.1 Similarly, PAR is a generate-and-validate,
test-case-driven technique developed for Java programs that
explicitly makes use of edit templates manually synthesized
from edit histories. Both are generic approaches that can, in
theory, produce multi-line patches for bugs in programs. Our
experiments show that our approach can correctly fix 23 bugs
out of the 90 programs, while PAR and GenProg are only
able to correctly fix 4 and 1 bugs, respectively. Moreover, our
approach on average only needs 20 minutes to fix the 23 bugs.
The results demonstrate the effectiveness and efficiency of our
proposed approach.

The contributions of our work are as follows:

1) We propose a generic and efficient history-based au-
tomatic program repair technique that uses information
stored in revision control systems of hundreds of software
systems to generate plausible and correct patches. Our
approach is generic since it can deal with bugs whose
fixes involve multi-line changes. It is efficient since it
can complete on average within less than 20 minutes.

2) We demonstrate that our approach is effective in fixing
23 bugs correctly, dramatically outperforming the perfor-
mance of the baseline solutions.

3) Our approach supports Java instead of C. Java is the
most popular programming language and its influence
is growing over time.2 Prior generate-and-validate and
test-case-driven APR techniques mostly work on C pro-
grams with a few exceptions (e.g., PAR). Unfortu-
nately, the implementation of PAR is not made pub-
licly available. To facilitate reproducible research, we
made the implementation of our approach available at
https://github.com/xuanbachle/bugfixes

The structure of the remainder of this paper is as follows.
In Section II, we elaborate the three steps of our proposed
approach. In Section III, we present our experiment results
which answer four research questions. We discuss related work
in Section IV and conclude in Section V.

II. PROPOSED APPROACH

The overall goal of our approach is two-fold: to generate
correct, high-quality bug fixes; and to quickly present such
fixes to developers. To achieve this goal, we divide our frame-
work into three main phases: (1) bug fix history extraction,
(2) bug fix history mining and (3) bug fix generation. The first
phase extracts a dataset of bug fixes made by human in the
history from GitHub. This dataset is input to the second phase,
which converts the bug fixes to a graph-based representation
from which it automatically mines bug fix patterns. The mined
bug fix patterns are input to the last phase.

In the last phase, we use a modified stochastic search
technique [16] to evolve patches to a given buggy program,
until we find a desired number of solutions. To reduce the risks
of either overly constraining the search space or overfitting to
the test suite, we use 12 existing mutation operators previously
proposed in the mutation testing literature and used by prior
repair techniques [38], [29], [25]. The fitness of the generated
fix candidates is determined by the frequency with which the

1https://libraries.io/github/SpoonLabs/astor
2http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
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changes included in a given patch occur in the mined bug fix
patterns produced by the second phase. Better fix candidates
are thus those that frequently occur in the past fix patterns,
and are thus more likely to be chosen to be validated against
failed test cases, i.e., the test cases that reveal the bug in
the original buggy program. Such selected patches are also
more likely to be further developed and evolved in subsequent
iterations. This fix candidate generation process is repeated
until a desired number of candidates that pass all the failed test
cases is identified. At the end of this phase, these candidates are
presented to the developer as possible fixes for the bug, ranked
by the frequency with which their edits appear in the bug fix
history. The developer can then investigate the suggested fixes
to find an actually correct fix.

In the next subsections, we describe each of the three
phases of our framework in more detail (Sections II-A–II-C);
Section II-D describes our mutation operators.

A. Bug Fix History Extraction

In this phase, we collect human-made bug fixes from many
open source projects on Github. The primary purpose of this
phase is to collect and collate commits that are solely related
to bug fix actions, excluding feature requests, refactoring, and
other non-repair types of edits.

To collect bug fix history data from GitHub, we follow
the procedure described by Ray et al. [44] to gather large,
popular, and active open source Java projects. In particular,
we use Github Archive [1], a database that frequently records
public activities from GitHub, e.g., new commits, fork events,
etc, to select only projects with the above characteristics. The
popularity of a project is indicated by the number of stars
associated with its repository, which corresponds to the number
of GitHub users that have expressed interest in that project. In
the interest of identifying only large, popular projects, we filter
out those with fewer than five stars and exclude projects with
repositories smaller than 100 Megabytes. Finally, we retain
projects that are active as of September, 2014. This still leaves
us with thousands of projects.

For each of the retained projects, we iterate through its
source control history, seeking to collect commits that ex-
clusively concern bug repair. This is a difficult problem in
repository mining [8]. We therefore seek a complete set of
bug-fixing commits using heuristics, though acknowledge that
our approach is best-effort. We deem a commit a bug fix if it
simultaneously satisfies the following conditions:

1) Its commit log contains the keywords such as fix, bug fix,
while not containing keywords such as fix typo, fix build
or non-fix.

2) It includes the submission of at least one test case
in that commit. Although the submitted test case does
not necessarily mean the one that induces the bug, the
inclusion of test case in the commit further increases the
likelihood that the commit is a bug fix.

3) It involves changes on no more than two source code
lines. The changed lines are counted, excluding code
comments.

This last requirement warrants additional explanation.
Commits that satisfy the first condition but involve many

changed lines typically include changes beyond the bug fix,
addressing feature addition, refactoring, etc [18], [23]. Thus,
we filter out commits involving more than two changed lines.
Ultimately, this leaves us with 3000 bug fixes across 700+
large, popular and active open source Java projects from
GitHub.3

B. Bug Fix History Mining

In the second phase, we mine frequent bug fix patterns from
the 3000 bug fixes, that appear in more than 700 projects,
collected by previous phase. We first convert the collected
bug fixes into a graph-based representation. We then apply an
existing graph mining technique to the dataset to mine closed
frequent patterns from the converted graphs.

Graph-based representation of bug fixes. Our goal in repre-
senting bug fixes is to succinctly abstract similar bug fixes into
a common, abstract representation amenable to mining, which
is especially challenging in the face of naming differences.
Different bug fixes may vary in terms of the naming scheme
in the underlying code, containing modifications to different
variable names, method names, etc. For example, Figure 2
shows two bug fixes that both involve the change of method
call parameter. Although there are differences in the expres-
sions (variables) that invoke the method calls, the method call
names and parameter names, conceptually, these bug fixes can
easily be classified as the same kind of bug fix, i.e., “method
call parameter replacement.”

Our first step in storing a bug fixing change is to capture its
effects at the Abstract Syntax Tree (AST) level, which abstracts
away many incidental syntactic differences (e.g., whitespace,
bracket placement) that obscure a patch’s semantic effect.
To this end, we use GumTree,4 an off-the-shelf, state-of-the-
art tree differencing tool that computes AST-level program
modifications [15]. GumTree represents differences between
two ASTs via a series of actions including additions, deletions,
updates or moves of individual tree nodes to transform one
AST to another. To do this, given a bug fix, we first identify
the file modified by the bug fix, and then retrieve the versions
of the file before and after the modifications were made. Both
versions of the modified file are then parsed to ASTs, denoted
as the “buggy AST” and “fixed AST,” respectively. We then
use GumTree to compute the actions needed to transform the
buggy AST into the fixed AST. For example, GumTree gives
us the action needed to represent the bug fix 1 in the Figure 2
as update from x1 to x2.

However, this raw information provided by GumTree is
insufficiently abstract on its own, since it is still specific to the
variable names x1 and x2. Additionally, the semantic context
surrounding the action is unclear, that is, whether the action
applies to a method call, an assignment, etc. To remedy this
issue, we convert the series of actions produced by GumTree
into a labelled directed graph that further abstracts over the edit
actions, while being able to capture surrounding semantics. In
this directed graph representation, an edge from a parent vertex
to a child vertex is labelled by the kind of the action made to
the child vertex. The context of the action is then captured by
the parent vertex. To illustrate by example, Figure 3 depicts the

3Dataset available: https://github.com/xuanbachle/bugfixes
4 https://github.com/GumTreeDiff/gumtree

215



graph that represents the bug fix 1 in Figure 2. Similarly, this
graph also represents the change made in bug fix 2. Thus, by
using this graph representation, we can represent bug fixes in a
common abstraction and capture contexts of the bug fixes. This
graph-based representation will then help us in using graph
mining techniques to mine frequent bug fix patterns.

//Bug fix 1: x1 replaced by x2, others remain
the same

- obj1.doX(x, x1)
+ obj1.doX(x, x2)

//Bug fix 2: y1 replaced by y2, others remain
the same

- obj2.doY(y, y1)
+ obj2.doY(y, y2)

Fig. 2: Example of two bug fixes involving method call
parameter replacement.

Mining closed frequent bug fix patterns. Given the full set
of bug fixes, represented as graphs, we mine closed frequent
patterns from the graphs. A pattern is frequent if it often occurs
in the database; we heuristically set this count to at least two. A
frequent pattern g is closed if there exists no proper supergraph
of g that has the same number of supergraphs, i.e., support, as
g. Thus, by definition, closed frequent patterns are the largest
possible patterns that frequently occur in the database. In our
domain, our goal is to mine the largest possible bug fix patterns
to precisely capture behaviours of the changes. We therefore
employ an extension of gSpan,5 an implementation of a state-
of-the-art frequent graph miner [52] for this task. We consider a
pattern is frequent if it has support greater than or equal to two.
We store information about patterns, including each pattern’s
vertices, edges, and supergraphs that contain the pattern. The
number of supergraphs of a pattern constitutes the frequency
of the pattern.

C. Bug Fix Generation

Overview. In this phase, we use a stochastic search approach
loosely inspired by genetic programming [26] to evolve a
patch for a given buggy program. The search objective is a
patch that, when applied to the input program, addresses the
defect, as identified by a set of failing test cases. GP is the
application of genetic algorithms (GA) to problems involving
tree-based solutions (programs, typically; in our application,
these are small edit programs applied to the original buggy pro-
gram). A GA is a population-based, iterative stochastic search
method inspired by biological evolution. Given a tree-based
representation of candidate solutions, GP uses computational
analogues of biological mutation and crossover to generate new
candidate solutions, and evaluates solutions using a domain-
specific objective, or fitness function. Potential solutions with
high fitness scores are more likely to be randomly retained into
future iterations both alone, modified slightly (via mutation),
or, in some applications, in combination with other solutions
(via crossover).

5 https://www.cs.ucsb.edu/ xyan/software/gSpan.htm
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Fig. 3: Graph-based representation of bug fixes in Figure 2

In our approach, we represent a single candidate solution
as a patch consisting of a sequence of edits to be made to the
buggy program; this representation has been shown both effi-
cient and effective in search-based program improvement [30].
Given a population of candidate solutions, we then use a
selection process to create new candidates through mutation,
and then to select mutated candidates to subsequent genera-
tions for additional evolution. The selection phase applies to
the mutation step, in which a new edit is pseudo-randomly
constructed and then added to an existing (possibly-empty)
candidate patch. This selection is informed by the bug fix
history database constructed as discussed in Section II-B. Note
that our algorithm does not perform crossover, using only
mutation to create new individuals; we leave the development
of a suitable crossover operator in our context to future work.

The details of this phase are further described in Algorithm
1. The primary inputs to the algorithm are the buggy program,
where the bug is indicated by one or more failing test cases;
a set of faulty locations, weighted by a preexisting fault local-
ization procedure; a distribution of edit frequencies mined as
discussed in the previous section, and a set of possible mutation
operators. We presently assume that the faulty methods are
known in advance, as file- and method-level localization rep-
resent an orthogonal problem; we then compute the faulty lines
in each prospective faulty method using existing statistical fault
localization techniques [2]. The stochastic algorithm includes
several tunable parameters, described in context.

Given those inputs, the algorithm works in multiple it-
erations. The first iteration constructs an initial generation
of PopSize candidate solutions by repeatedly constructing
single-edit patches for the program (lines 16–18). Subsequent
generations are created by adding new mutations to retained
solutions in the current population. We describe mutation as it
is used to create the initial population of single-edit patches;
its application in subsequent iterations follows naturally.

Mutation. The mutation procedure adds an edit to a (possibly-
empty) candidate patch to create a new patch candidate. It is
described from line 4 to line 12 in Algorithm 1. At a high
level, the mutation step creates a large number of candidate
edits, from which a single edit is ultimately propagated into
the candidate patch. First, the algorithm randomly selects a
subset of L fault locations to which mutations may be applied
(line 5), weighted by the score given by the statistical fault
localization. We heuristically set L to 10 in our experiments,
leaving a full parameter sweep to future work. Next, lines 7
to 10 generates a set of possible edits to select in this mutation
step. This involves first identifying which mutation operators
can be applied to each of the prospective faulty locations. For
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Algorithm 1: Bug Fix Generation. The select proce-
dure returns one or more individuals from a population,
either uniformly or weighted by a provided function.
applies and instant are described in text. The tun-
able parameters are PopSize (population size), M (desired
solutions), E (number of seeded candidates to the initial
population), and L (number of locations considered in
the mutation step).

Input : BugProg: Buggy program
FaultLocs: Fault locations
NegTests: initially failing test cases
FixPar: mined edit frequency distribution
ops: possible operators
params: Tunable parameters PopSize, M , E, L

Output: A ranked list of possible solutions
1 helper fun editFreq(cand)
2 let N ← |cand|

3 return

N−1∑

i=0
FixPar(candi)

N
4 helper fun mutate(cand)
5 let locs ← select(FaultLocs, L)
6 let pool ← ∅
7 foreach f ∈ locs do
8 let opf ←

⋃

op∈applies(ops,loc)
instant(op, loc)

9 let cand’ ← cand + select(opf , 1)
10 pool ← pool ∪{ cand’ }
11 end
12 return select(pool, 1, editFreq)
13 fun main
14 let Solutions ← ∅
15 let Pop ← {E empty patches}
16 while | Pop | < PopSize do
17 Pop ← Pop ∪ mutate([ ])
18 end
19 repeat
20 foreach c ∈ Pop do
21 if c /∈ Solutions then
22 if c passes NegTests then
23 Solutions ← Solutions ∪ c
24 else
25 c ← mutate(c)
26 end
27 end
28 end
29 until |Solutions| = M
30 return Solutions

example, we should not use append to add any statements after
a return statement, because doing so results in a dead code.
This check is performed by the function applies on line 8.
We reuse existing mutation operators (see Section II-D for a
complete list, and details about their application), that have
been proposed in prior mutation testing and program repair
studies, to provide a diverse set of bug fix edit candidates.
There are often several ways to instantiate a given operator. For
example, append requires the selection of fix code to append
at a given location. The instant function returns all possible
instantiates of a given operator to the provided location, also
on line 8. We select one of these edits (line 9) and create a
new candidate by adding it to the current candidate.

This results in an intermediate pool of new pseudo-random
patch candidates (initialized on line 6, updated on line 10)

from which a single candidate will be retained. This retained
candidate is thus the single result of the mutation step; it is
the result of adding a new random edit to the (possibly-empty)
candidate patch under mutation. To pseudo-randomly select an
edit from this pool, we weight each edit by the frequency
with which it appears in the mined bug fix patterns. This
computation is performed in helper function editFreq, used
in selection on line 12. Note that since exact graph matching
(isomorphism) is notoriously difficult and expensive [49], we
relax the conditions of matching fix candidates against past fix
patterns. We instead say a fix candidate matches a fix pattern
(graph) if the graph representing the candidate has more than
half of its labels of vertices and edges matched with the fix
pattern’s vertices and edges respectively.

The frequency formula at line 3 works as follows: Given
a fix candidate consisting of N edit operations, each edit
operation contributes equally to the candidate’s frequency.
That is, we break down the block of N edits into each
constitute edit and then fuse the frequency of each small edit
together. The intuition is that, due to the randomness of the
mutation procedure, generated fix candidates may contain bug-
fix irrelevant edit operations, e.g., field or variable declarations.
Ideally, these irrelevant edits should not affect the score of fix
candidates containing them, since such edits contribute nothing
or very little to the fixing effort. If we count the frequency
of the fix candidate consisting of these edit operations by
the whole block of N combined edits, it would make the fix
candidate very rare when comparing the candidates against the
historical bug fix patterns, and reduce the likelihood that the
fix candidate will persist for future evolution. Our use of mean
edit frequency mitigates the effect of adding bug-fix irrelevant
edit operations with respect to the viability of the overall patch.

At line 12, we pseudo-randomly select one edit from the
pool to add to the current candidate solution. This selection
is informed by the computed frequency of a candidate patch
that includes each edit in turn (the higher the frequency score
of the overall patch that includes it, the more likely it is that
the potential edit is selected from the pool). We use stochastic
universal sampling [6] for this task. This selected candidate is
thus the return value of the mutation procedure.

Main algorithm. Mutated candidates are created and pro-
cessed by the main algorithm, described from line 13 to line 30.
Line 15 adds E number of empty candidate patches to the
initial population as seeds. We heuristically set E to 3 in
our algorithm. Lines 16–18 create an initial population with
PopSize candidate patches by repeatedly mutating the empty
patch. We heuristically set PopSize to 40 in our algorithm.
Next, from line 20 to line 28, we validate each candidate in the
current population against the failed test cases. If a candidate
passes all the failed test cases, we add it to the set of possible
solutions (line 23). Otherwise, we mutate the candidate and
carry the mutated candidate over the next iteration (line 25).

The process continues until a given number of fix candi-
dates that pass all the previously failed test cases is reached.
This is indicated at line 29, where the solutions’ size reaches
M desired solutions. We heuristically set M to 10 in our
algorithm. Ultimately, these candidates are presented to the
developer as possible fixes to the buggy program, ranked by
the frequency of the underlying edits. The developer is then
responsible for assessing the correctness of the suggested fixes.
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TABLE I: 12 mutation operators employed in our framework

Operator Action Description

GenProg Mutation Operators

Insert statement Insert a statement before or after a buggy statement
Replace statement Replace a statement with a buggy statement
Delete statement Delete a buggy statement

Mutation Testing Operators

Insert Type Cast Cast an object to a compatible type
Delete Type Cast Delete type cast used on an object
Change Type Cast Change type cast to another compatible type
Change Infix Expres-
sion

Change primitive operator (arithmetic, relational, condi-
tional, etc) in an infix expression

Boolean Negation Negate a boolean expression.

PAR Mutation Operators

Replace Method Call
parameter

Replace a parameter in a method call by another param-
eter with compatible types.

Replace Method Call
Name/Invoker

Replace the name of a method call, or a method-
invoking expression, by another method name or ex-
pression with compatible types.

Remove Condition Remove a boolean condition in an existing if condition
Add Condition Add a boolean condition to an existing if condition

For example, the developer can pick any of the fixes appearing
on top of the recommendation to validate the fixes by running
them against previously passed test cases, and see if the fixes
are actually semantically correct or not.

D. Mutation Operators

In this section, we describe the 12 mutation operators we
employ to generate fix candidates in our framework; these
operators are listed in Table I. These operators have been used
previously in mutation testing and well-known repair tech-
niques; we use them to simultaneously provide a broad array of
potential edit types, while mitigating the risk of overfitting the
operators used in our experiments to the underlying dataset.

GenProg Mutation Operators. We employ the three mutation
operators from GenProg [28], [29]. The delete operator deletes
a given potentially-buggy statement. The insert and replace
operators work under the assumption that the repair is a
piece of code that can be found from somewhere else in
the same program. The insert operator inserts a randomly-
selected statement before or after a given buggy statement.The
replace operator replaces a potentially-buggy statement with
another randomly-selected statement. For insert and replace,
the original GenProg algorithm randomly chooses a statement
from elsewhere in the same program, given certain semantic
constraints (e.g., variable scoping). However, given a time
limit, a large program can enormously reduce the possibility
of selecting the correct statement.

We mitigate this problem in several ways. First, we reduce
the scope of source statement selection to the same file with the
target buggy statement. Previous studies have shown that this
is adequate for many automated program repair problems [7].
Second, we heuristically prioritize in-scope statements. We
view the problem of finding the source statement as two
stages: First, we find the clones of the piece of code (method)
surrounding the target buggy statement. Second, each of state-
ments in the clones that have higher similarity is given higher
probability to be a source statement. For statements that are not
in any clones, we give them a default probability which is less

than the probabilities of any statements found in clones. To
find clones, we employ tree-based clone detection technique
described by Jiang et al. in [20].

Mutation Testing Operators. We employ five mutation op-
erators proposed in mutation testing research [38], [39]. The
first three concern type casting: delete type cast, insert type
cast, and change type cast. The latter two focus on inserting
or changing casts only to compatible types. The change infix
expression operator changes the operator used in a given
infix expression. For example, an infix expression like a ≥ b
involves an arithmetic operator that can be randomly changed,
such as to a > b, a < b or a ≤ b. An infix expression a �= b
that involves relational operator can be changed to a == b.
An infix expression a && b that involves conditional operator
can be changed to a || b and vise versa. The boolean negation
operator tries to negate a boolean expression. For example,
true can be negated to false, and isNegative(a) can be
negated to !isNegative(a).

PAR Mutation Operators. We employ four out of ten mu-
tation operators proposed by Kim et. al. [25], leaving the
employment of the remaining six operators as future work.
These operators are applied to either method call or if con-
dition. The first operator replaces a method call parameter,
while the second operator replaces method call name, or
the expression that invokes the method call. The last two
operators deal with condition expression of if statement. An
if condition expression containing more than two conditions
can apply the remove condition expression. For example, if(a
|| b){...} can be changed to if(a){...} by removing
condition b, which is randomly chosen from the condition.
The add condition expression tries to add a condition to an
if condition. The condition to be added is chosen from a
pool of conditions collected from the same file with the faulty
if statement. However, this pool of collected conditions can
be inappropriate to fix a given bug, since they may reference
out of scope variables.

To address this, our framework further cultivates the search
space by inventing new conditions that have not appeared
elsewhere in the same file. The idea is that the missing
condition may very likely involve one of the variables used
in the current if condition. Toward this end, we collect all
variables used in the if condition. We then collect all boolean
usages that involve the types of the collected variables from the
same file. We then apply the usages with the collected variable
names, and add these usages to the pool possible conditions
that can be added to the current if condition.

III. EXPERIMENTS AND ANALYSIS

In this section, we first describe our dataset (Section III-A),
followed by our experimental settings (Section III-B), research
questions (Section III-C), and results (Section III-D). We
conclude with a discussion of threats to validity (Section III-E).

A. Dataset

We apply our approach to repair a subset of bugs from
Defects4J [22], a large collection of defects in Java program
intended to support research in fault localization and soft-
ware quality. Defects4J has also been used in previous study
of several automated program repair (APR) tools [14]. The
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TABLE II: Dataset Description. “#Bugs” denotes the total
number of bugs in the Defects4J dataset. “#Bugs Exp” denotes
the number of filtered bugs we used in our experiments.

Program #Bugs #Bugs Exp
JFreeChart 26 5
Closure Compiler 133 29
Commons Math 106 36
Joda-Time 27 2
Commons Lang 65 18

Total 357 90

dataset contains 357 real and reproducible bugs from 5 real-
world open source Java programs. In our experiments, we
use 90 bugs from Defects4J.6 Table II depicts the number
of bugs from each program in Defects4J and the number of
bugs from each program that are used in our experiments. We
use only these 90 bugs out of 357 bugs in Defects4J since
we filtered out bugs that are too difficult for current state-
of-the-art repair techniques to fix. That is, we first filter out
bugs that involve more than six changed lines since they are
typically too difficult for current automated program repair
techniques to fix [42]. Second, we also filter out too difficult
bugs considering the semantics of the bugs, even though they
involve changes that are syntactically fewer than six lines.
For example, one kind of difficult bugs could be adding a
field in a class and use that field for fixing bugs in methods.
We hypothesize that an effective and usable APR technique
should be able to fix classes of bugs that are easier to fix
first before it can handle very difficult bugs. We thus prefer
this dataset, filtered according to rules suggested in previous
empirical studies to a completely manually-constructed dataset
to mitigate to some degree the threat over overfitting our
technique to the bugs under repair [35]. We use the fix template
database constructed as described in Sections II-A–II-B.

B. Experiment Settings

We compare our approach against PAR [25] and Gen-
Prog [29]. Since PAR is not publicly available, we re-
implemented a prototype of PAR for this experiment based
on our framework. We also note that the original version of
GenProg works on C programs and thus we used a publicly
available implementation of GenProg7 that works on Java
program provided by Monperrus et al. [14].

We assign one trial for each approach to run on each bug.
Specifically, each trial of our approach is assigned one 2.4 GHz
Intel Core i5-2435M CPU and 8GBs of memory. Each trial is
terminated either after 90 minutes or 10 generations or if 10
possible solutions were found. The size for each population is
set to 40 for consistency with previous work [29], [25]. Since
we consider current automated program repair techniques as
only recommendation systems (since they cannot fix most of
the bugs yet), an automated program repair technique needs to
be efficient enough (c.f., [27]). We thus set the timeout for our
experiment as 90 minutes for each trial. We note that since

6The bugs are made available here: https://github.com/xuanbachle/bugfixes
7https://libraries.io/github/SpoonLabs/astor

our approach, PAR and GenProg are all stochastic, multiple
trials are needed to properly assess their performances [4]. We
discuss this in threats to validity.

C. Research Questions

In our experiments, we seek to answer the following
research questions:

RQ1 How many bugs can our technique fix, correctly, as
compared to the baselines?

We compare the effectiveness of our approach against
PAR and GenProg in terms of number of bugs that each
approach can correctly fix. To do this, the first author of the
paper manually inspected generated patches to verify their
correctness with respect to the corresponding bugs. A patch
is deemed a correct fix if it satisfies the following conditions:
(1) It results in a program that passes all test cases (both
passing and initially failing). (2) it follows the behavior of the
corresponding human-made fix. Checking the first condition
is not difficult. However, the second condition involves an
intrinsic qualitative judgement and a deep understanding of
the program in question. Thus, for the second condition, we
only consider fixes that are as close as possible to the human-
made fixes. We leave a comprehensive human study on bug
fixes quality to future work.

RQ2 Which bugs can the approaches fix in common? Which
bugs can only be repaired by one of the approaches?

To gain insight into the process and limitations of the
different approaches, we identify the defects for which our
approach, PAR and GenProg all generate correct fixes. We
describe case studies that illustrate potential reasons why some
bugs can be fixed by one approach but not others.

RQ3 How long does it take to produce correct fixes?

In this research question, we investigate the average amount
of time for each approach to run on the bugs that they can
correctly fix. An approach is deemed efficient if it needs a
reasonable computation time to find correct fixes. We consider
current automated program repair techniques as recommenda-
tion systems, and a recommender that takes several hours to
produce recommendations is ineffective.

RQ4 What are the rankings of the correct fixes among the
solutions that our approach presents to the developer?

Our approach generates a ranked list of possible solutions
to a given bug. The higher a correct fix is ranked, the better,
requiring less effort from the developer to try the solutions one
by one from the top to the bottom. Thus, in this research ques-
tion, we investigate the ranking of the correct fixes among the
possible solutions that our approach presents to the developer.

We report on two types of ranking. First, we present
the ranking in the order that fixes are generated temporally.
If effective, this ranking is helpful in case the developer is
rushing to clear the bug, since he or she can just try whatever
suggestions appear earlier instead of waiting for the whole
process to complete. Second, we assess a ranking based on the
frequency with which fix edits appear in the historical data.
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TABLE III: Effectiveness of our approach, PAR and GenProg
in terms of number of defects repaired from each program.

Program Our Approach PAR GenProg
JFreeChart 2/5 -/5 -/5
Closure Compiler 7/29 1/29 -/29
Commons Math 6/36 2/36 -/36
Joda-Time 1/2 -/2 -/2
Commons Lang 7/18 1/18 1/18

Total 23/90 4/90 1/90

  
 
 
 

18 bugs 
 
    

 
 
 
 
 
 

 4 bugs 
PAR 

 1 bugs 
GenProg 

Our Approach 

Fig. 4: Common Bugs Fixed by Program Repair Techniques

D. Results

RQ1: Number of Bugs Correctly Fixed. Table III depicts the
number of bugs for which each approach can generate correct
fixes. In total, out of the 90 bugs, our approach generates
correct fixes for 23 bugs; PAR can only correctly fix 4 bugs;
GenProg generates only one correct fix. For the 23 bugs fixed
by our approach, 11 (out of 12) mutation operators help fix
these bugs. Each of these 11 operators helps fix no more than
5 bugs in the 23 bugs. Thus, it is not the case that the use of
only a few operators can help fix all of the 23 bugs fixed by our
approach. This supports our belief that while our approach is
more effective than the baselines, its effectiveness is less likely
to be biased by the experimental dataset.

Although the results for the previous techniques are some-
what worse than expected, we note that our timeout is set at
90 minutes and that we run only one trial on each bug. In
previous experiments, GenProg and PAR set time outs at 12
hours, and run 10 trials in parallel for each bug [29], [25].
We can expect greater success if we increase the number
of trials. However, our results are consistent with a recent
study, demonstrating that GenProg produces correct patches
for 4 of 357 bugs in Defects4J with a 2 hour timeout and
single trial per bug [14]. In sum, the results show that our
approach substantially outperforms PAR and GenProg in terms
of number of bugs correctly fixed.

RQ2: Case Studies. Figure 4 shows that the bugs that PAR and
GenProg correctly fix are a subset of those that our approach
correctly fixes. There are 18 bugs that our approach can fix
that PAR and GenProg do not. We present observations on
this in the form of illustrative case studies.

Lack of Mutation Operators. In many cases, PAR’s mutation
operators/templates are inadequate for fixing these bugs in the

same way that the developer did. For example, consider the
human-produced fix for Commons Math Version 5:

if(real == 0.0 && imaginary == 0.0){
- return NaN;
+ return INF;
}

Here, the human replaced one return statement with another.
PAR has no mutation operator for this, while our approach has
the replace statement operator adopted from GenProg, which
helped generate this fix. Note that GenProg timed out on this
bug, and thus did not fix the bug in our experiments.

Timeout. Even when the previous techniques possess the
necessary mutation operators to potentially fix the bugs in the
same way the developers did, in several cases they timed out
before finding the fixes. For example, consider the developer-
produced fix for Closure Compiler version 14:

for(Node finallyNode :
cfa.finallyMap.get(parent)){

- cfa.createEdge(fromNode, Branch.UNCOND,
finallyNode)

+ cfa.createEdge(fromNode, Branch.ON_EX,
finallyNode);

}

The developer replaced the method call parameter
Branch.UNCOND with another parameter, Branch.ON_EX.
PAR includes potentially appropriate templates, such as change
method call name or replace parameter for method call. There
are thus many possibilities for PAR to generate fix candidates
for this buggy statement. However, even if PAR can generate
the correct fix candidate among the pool of possible fix
candidates, the correct fix candidate was not evaluated, as
PAR timed out while evaluating other, incorrect candidates.
We leave a more extensive study with longer timeouts and
more random trials to future work.

Plausible vs Correct Fixes. Automated program repair tech-
niques can generate both plausible and correct patches. A
plausible patch leads the patched program to pass all test cases,
but does not necessarily correspond to a true fix, consistent
with the underlying specification and developer intent. A
correct fix, on the other hand, is the one that correctly fixes
the semantics of the buggy program. For example, consider
the following code, including a plausible patch generated by
GenProg for Math version 85:

//Fix by human and our approach: change
condition to fa * fb > 0.0

if (fa * fb >= 0.0) {
//Plausible fix by GenProg

- throw new ConvergenceException("...")
}

GenProg’s plausible patch simple deletes the throw state-
ment. This fix makes the program pass all the given test cases,
at least in part because the test cases do not truly check the
underlying behavior. However, as compared to the human fix
for the same bug, this fix is unlikely to correspond to developer
intent or the underlying program specification. Additionally,
the deletion of throw statements rarely happens in historical
practice. A more correct fix for this bug changes the arithmetic
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operator so that the exception is thrown in a correct manner
that indeed satisfies the desired behaviour of the program; this
is shown in the comment in the snippet, above the if condition.

In our approach, the delete statement mutation operator
adopted from GenProg and the change infix (arithmetic) ex-
pression operator adopted from mutation testing both lead to
the generation of a plausible patch: one similar to GenProg’s,
and the other similar to the human fix. However, partially
due to the guidance provided by historical bug fixes, we
avoid the plausible but incorrect patch and correctly choose
the correct patch since the historical bug fix patterns suggest
that changing an arithmetic happens more frequently in bug
fixing practice. We also note that PAR does not generate any
patch for this bug. Although PAR has the expression replacer
operator which replace an if condition with another condition
collected from the same scope, this operator does not help
PAR generate patches for this bug since there is no correct
condition appearing elsewhere in the same scope (same file).

Unfixed bugs in common. We observe that a common reason
for why our approach, PAR and GenProg cannot fix bugs is a
lack of ingredients that help synthesize the fix. For example,
consider the human repair for Closure Compiler version 42:

+ if(loopNode.isForEach()){
+ errorReporter.error("unsupported...",

sourceName, loopNode.getLineno(),"", 0);
+ return newNode(...);
}

The developer added an entire if statement to fix the bug.
At first sight, the bug may be fixable by the program repair
techniques in the same way as the developer did, if the same
if statement appears elsewhere in the search space. However,
it is indeed not the case. Thus, the three approaches failed to
generate fixes for this bug.

RQ3: Average Amount of Time to Correct Fixes. In this
research question, we report the average amount of time that
our approach, GenProg, and PAR need in order to generate the
correct fixes. GenProg requires less than 10 minutes to produce
the fix for the one bug that it can correctly fix. PAR requires
on average 10 minutes to generate correct fixes for the 4 bugs
that it successfully fixes. Our approach needs on average 20
minutes to generate correct fixes for each of the 23 bugs.

This indicates that PAR and GenProg are still efficient and
effective for a certain class of bugs. For example, bugs that
have a small search space to be traversed to find correct fixes
could be quickly fixed by PAR or GenProg. Our approach,
on the other hand, is resilient to many classes of bugs with
the help of both the mutation operators and the guidance
of historical bug fix data. Note, however, that although our
technique takes longer than the baselines, 20 minutes is still
well within the range of a suitably efficient technique. Also,
the average time is computed over the time needed by our
approach to fix the more difficult bugs that cannot be fixed
by PAR and GenProg even within 90 minutes (timeout cases).
The key to good efficiency of our approach is that we generate
a diverse set of possible fix candidates, and then use historical
data to help pick the likely good fix candidates and test them
against only the failed test cases, which originally make the
buggy program fail. Thus, we do not waste too much time on

evaluating nonsensical candidates. However, we do depend on
the developer to assess the final patches for suitability with
respect to the initially passing test cases.

RQ4: Rankings of Correct Fixes among Recommended
Solutions. In this research question, we report the rankings of
the correct fixes among the possible solutions that our approach
presents to the developer. Recall that for each bug, we attempt
to generate 10 possible solutions. We investigate two criteria
for ranking possible solutions: time in which the fixes are
produced, and edit frequency in the historical database.

Using time, the correct fixes are ranked number one for 13
out of the 23 bugs that we can produce correct fixes. We note
that there are 6 bugs that we can only generate one solution for
each bug and this solution is indeed the correct fix of the bug.
For the remaining 10 bugs, each bug has correct fix ranked
from 3 to 7 among the 10 possible solutions presented to the
developer. Using frequency, there are 11 bugs that have correct
fixes ranked number one. The remaining 12 bugs have correct
fixes ranked from 2 to 10, among the 10 possible solutions
presented to the developer.

These results suggest that ranking the correct fixes among
possible solutions by either time or frequency is acceptable.

E. Threats to Validity

We consider three types of threats to validity: internal,
external and construct validity:

Threats to Internal Validity. Threats to internal validity relate
to errors in our implementation and experiments. We use a pub-
licly available implementation of GenProg for Java programs.
That implementation of GenProg is not written by the authors
of GenProg, and thus it is possible that the implementation
does not match all details specified in the original paper.
Similarly, we reimplement PAR following the details provided
in its paper. There could be bugs in the implementation that
we are not aware of. To mitigate these threats, we have
rechecked our implementation and experiments, fixed errors
that we have found, and released our prototype for assessment
by and comment from the community.

Threats to External Validity. Threats to external validity
correspond to the generalizability of our findings. We perform
our experiment on a dataset of 90 bugs from five Java projects;
although we filter heuristically, this dataset is independently
created and curated, mitigating the risk that our technique
overfits to it. Still, they may not fully represent all real-world
bugs. We plan to experiment on a larger dataset in the future.

Threats to Construct Validity. Threats to construct validity
correspond to the suitability of our evaluation metrics. We
consider a patch is correct if it passes all the test cases
and qualitatively semantically matches human-made fix. To
assess the second criterion, the first author manually checks the
patches generated by the APR techniques. The APR techniques
often generate patches that are syntactically the same as the
human-made fix, but not for all cases. The first author has
exercised caution when checking the patches, but it is possible
that there are mistakes that we are not aware of. We plan to do
a human study on the patches that the three APR techniques
produce to better assess the quality of the patches.

221



IV. RELATED WORK

Automated program repair has been the subject of con-
siderable recent attention in the software engineering research
community, and a large number of projects concern some form
of repair. In the interest of brevity, we focus on indicative and
closely-related techniques.

APR targeting general bugs: GenProg [28], [29] uses a
Genetic Programming technique to evolve patches to a buggy
input program, searching for candidates that cause the input
program to pass all given test cases (both initially passing and
initially failing). Other techniques using randomized search
for patch generation have also been proposed [5], [9], [41],
[50]. Debroy and Wong’s efforts notably also reuse mutation
operators to create patches, but do not reference edit history in
evaluating candidate solutions [13]. Our work is importantly
different because it uses the program history to inform fit-
ness computation and candidate selection, with a long-term
goal of creating more natural repairs and repairs that are
of higher quality because of their resemblance to previous
repairs. Pattern-based Automatic program Repair (PAR), which
uses bug fix templates manually learned from existing human-
written patches [25], is closely conceptually related to our own.
PAR uses a similar randomized technique to apply these tem-
plates to a buggy program. The above mentioned approaches,
including ours, make use of an important hypothesis that
new code (e.g., bug fixes) can often be reconstructed from
fragments of code that already exist in the code base. Barr
et al. [7] empirically validate this hypothesis, showing that
changes are 43% graftable from the exact version of program
being changed. Another closely related work, that is developed
in parallel with our work, is the work by Long and Rinard,
named Prophet [32]. In that paper, the authors also leverage
history information to fix bugs. Our work is different from
theirs in several aspects: (1) Prophet can only fix bugs that
involve one line bugs, while our approach can solve bugs that
require multi-line changes, (2) We use bug-fix information
from hundreds of open source projects, while prophet only
uses eight, (3) We use a graph based representation which
is a generic representation as compared to the ad-hoc set of
features that are used by Prophet, (4) Prophet works on C
program, our approach works on Java program, (5) Prophet
successfully fixes 14 bugs, our approach successfully fixes 23
bugs, and (6) Our approach is more efficient than Prophet;
only 4 of the bugs can be fixed by Prophet in 20 minutes
or less (which is the average time needed by our approach
to fix bugs). Unfortunately, an empirical comparison between
our approach and Prophet cannot be made since we support
different programming languages.

By contrast with search-based heuristic approaches, seman-
tic approaches borrow ideas from program synthesis to con-
struct bug-fixing patches. Techniques in this class include Sem-
Fix [36], a repair tool using semantic analysis such as symbolic
execution, constraint solving and program synthesis. SemFix
leverages test cases as implicit program specification to guide
the patch synthesis process. More recently, DirectFix [34]
extends this approach by targeting simplicity of generated
patches, using MaxSAT constraint solving and component-
based program synthesis. SearchRepair [24] uses SMT-solver-
informed semantic code search and lightweight analyses to
construct high-quality patches at a higher granularity level than

previous techniques.

APR targeting specific bugs: Our approach targets general
defect repair in Java. By contrast, a number of techniques
target particular defect types or classes. For example, Perkins et
al. propose ClearView, targeting security errors in binary
programs [40]. Jin et al. present AFix, which uses static
analysis to automatically repair single-variable atomicity viola-
tions [21]. Carbin et al. detect and fix infinite loop errors [11];
Smirnov et al. target fixing buffer overflow related errors [46];
Sidiroglou et. al propose an architecture to repair flaws that
are exploited by zero-day worms [45]; Novark et al. present
Exterminator - a system that automatically fix memory errors,
including buffer overflows and dangling pointers [37]; Coker
and Hafiz target integer vulnerabilities in C [12]. We leave an
assessment of the particular defect types to which our approach
most naturally applies to future work.

V. CONCLUSION AND FUTURE WORK

Bug fixing is a difficult task that often takes much time
and resources. To help developers fix bugs, researchers have
proposed automated program repair (APR) techniques. Unfor-
tunately, existing techniques are often not effective or effi-
cient enough. They often unsuccessfully return correct patches
despite running for a long period of time (e.g., more than
10 hours). In this work, we propose a generic and efficient
APR technique that leverages information from historical bug
fixes. Our solution takes as input a large set of repositories
of software projects to create a knowledge base which is then
leveraged to generate a ranked list of plausible bug fix patches
given a buggy program and a set of test cases. It works on
three phases: bug fix history extraction, bug fix history mining,
and bug fix generation. We have evaluated the effectiveness
of our proposed approach on a dataset of 90 bugs from five
Java programs, and compared its effectiveness against two
other generic generate-and-validate and test-case-driven APR
techniques that work on Java programs. Our experiment results
highlight that our approach can fix 23 bugs correctly, which
are many more than the bugs that can be fixed by GenProg
and PAR. On average, our solution can fix the 23 bugs within
20 minutes. These highlight the superior performance of our
proposed approach in terms of effectiveness and efficiency as
compared to existing generic APR solutions that can fix multi-
line bugs in Java programs.

In the future, we plan to improve the effectiveness and
efficiency of our solution further. We plan to do so by
designing better ways to traverse the search space of potential
patches. We also plan to incorporate data from not only 3,000
bug fixes but even a larger number taken from even many
more programs. Moreover, we plan to design an adaptive APR
strategy that can vary the way it generates patches depending
on characteristics of a bug.
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