A Novel Fitness Function for Automated Program Repair Based
on Source Code Checkpoints

Eduardo Faria de Souza
Instituto de Informaética
Universidade Federal de Goias
Goiania, Goias, Brazil
eduardosouza@inf.ufg.br

ABSTRACT

Software maintenance, especially bug fixing, is one of the most
expensive problems in software practice. Bugs have global impact
in terms of cost and time, and they also reflect negatively on a com-
pany’s brand. GenProg is a method for Automated Program Repair
based on an evolutionary approach. It aims to generate bug repairs
without human intervention or a need for special instrumentation
or source code annotations. Its canonical fitness function evaluates
each variant as the weighted sum of the test cases that a modified
program passes. However, it evaluates distinct individuals with the
same fitness score (plateaus). We propose a fitness function that
minimizes these plateaus using dynamic analysis to increase the
granularity of the fitness information that can be gleaned from
test case execution, increasing the diversity of the population, the
number of repairs found (expressiveness), and the efficiency of the
search. We evaluate the proposed fitness functions on two stan-
dard benchmarks for Automated Program Repair: IntroClass and
ManyBugs. We find that our proposed fitness function minimizes
plateaus, increases expressiveness, and the efficiency of the search.

CCS CONCEPTS

« Computing methodologies — Genetic algorithms; « Soft-
ware and its engineering — Search-based software engineer-
ing;

KEYWORDS

genetic programming, software engineering, program repair, fitness
function

ACM Reference Format:

Eduardo Faria de Souza, Claire Le Goues, and Celso Gongalves Camilo-
Junior. 2018. A Novel Fitness Function for Automated Program Repair Based
on Source Code Checkpoints. In GECCO ’18: Genetic and Evolutionary Com-
putation Conference, July 15-19, 2018, Kyoto, Japan, Jennifer B. Sartor, Theo
D’Hondt, and Wolfgang De Meuter (Eds.). ACM, New York, NY, USA, 8 pages.
https://doi.org/l().1145/3205455.3205566

1 INTRODUCTION

Regardless of the size or experience in a group of developers, the
code they produce is susceptible to bugs. Critical bugs are present

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.

GECCO 18, July 15-19, 2018, Kyoto, Japan

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5618-3/18/07...$15.00
https://doi.org/10.1145/3205455.3205566

Claire Le Goues
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
clegoues@cs.cmu.edu

Celso Gongalves Camilo-Junior
Instituto de Informaética
Universidade Federal de Goias
Goiania, Goias, Brazil
celso@inf.ufg.br

in everything from small to mature projects and from proprietary
to open-source software [3]. Such bugs compromise functionality,
expose sensitive data, or even grant privilege escalation, among
other harmful effects. At least 3.7B people in the world were affected
by bugs in calendar year 2017. These bugs led to vehicle recalls,
malware in mobile phones, undelivered paychecks, hacked accounts,
and so on. Overall, such losses amounted to 1.7T USD in losses from
software failure in 2017 [22]. Bug fixing, an action traditionally
addressed by humans, is costly and time-consuming; worse, human
developers often introduce new defects over the course of repairing
others [28].

Automated Program Repair is a research area that seeks to au-
tomatically fix bugs efficiently and accurately [11]. One way to
subdivide this domain is into behavioral and state-based repair ap-
proaches. Behavioral approaches seeks to address bugs by directly
modifying source code, while state-based techniques aim to change
the environment or otherwise apply modifications at run time [18].

GenProg is a classic behavioral technique for automated program
repair [13]. It is based on the principles of Genetic Programming [2],
which it uses to evolve a set of changes (a patch) to buggy source
code. Given as input a source code and a test suite, it seeks such
a patch that leads all input tests to pass, including those that are
initially failing (identifying the bug). It does so without special
annotations or any other form of human intervention.!

A patch is represented as a sequence of edit operations to the
source code. Each edit operation is composed of an action (append,
swap/replace, or delete) and one or two statements, depending on
the action selected. The first indicates the location at which the
edit will be applied; the second, when applicable (i.e., for append,
swap, or replace operations, indicates the code to be inserted). This
collection of sequences of edit operations comprises the search
space. Naively, this space is very large. For instance, a faulty pro-
gram with 100 statements has a search space of 2.7 - 10'® possible
3-edit patch solutions [15]. As this search space grows exponen-
tially with considered lines of code, any technique proposing to
traverse this space must do so efficiently, distinguishing between
possible solutions to identify promising search areas and, ideally,
a fix. Heuristic techniques like fault localization [1, 7] and simple
semantic reasoning [24] can reduce this search space somewhat,
but overall the problem remains difficult.

One important and underexplored area for possible improve-
ment to the GP for repair search problem is the fitness function.
GenProg’s canonical fitness function scores each individual as the
weighted sum of the test cases that the modified program passes.

!GenProg is available at https://squareslab.github.io/genprog-code/.

https://doi.org/10.1145/3205455.3205566
https://doi.org/10.1145/3205455.3205566
https://squareslab.github.io/genprog-code/

GECCO 18, July 15-19, 2018, Kyoto, Japan

For efficiency, initially only a random subsample of the positive
(initially passing) tests and all the negative (initially failing) tests
are applied [5]. If the individual succeeds on all the tests in the sub-
sample, the remaining positive test cases are executed. A variant is
considered a repair when all test cases pass [10].

Regardless of the random sample, two individuals passing the
same proportion of passing versus failing test cases receive the
same fitness score. This fundamentally produces fitness score pla-
teaus, where fitness fails to truly distinguish between individuals of
otherwise varying quality. This has long been observed in the pro-
gram repair domain [6]. These plateaus can paralyze the search, or
render it purely random, since many points in the search space have
the same observed fitness value. An objective function that does
not effectively differentiate between possible solutions accordingly
cannot guide the search for promising regions.

We propose to minimize these plateaus, increasing the granular-
ity of the fitness information, by instrumenting the program to col-
lect information about the intermediate program state throughout
test case execution. We call this dynamically collected information
checkpoints, and we use them to distinguish between the behavior
of different potential solutions. We conjecture that this approach
to evaluate fitness can, in a novel way, reduce the number of fit-
ness plateaus in GP-based Automated Program Repair and increase
search efficiency.

The development of our research was guided by the following
research questions:

e ROQ1: Does aggregating checkpoints’ data in the fitness func-
tion successfully reduce the incidence of plateaus in the
patch-based program repair search space?

e RQ2: Does the checkpoints-based fitness function improve
the expressiveness and the efficiency of GenProg, a GP-based
automated program repair technique?

Our primary contribution is thus a novel fitness function for
GP-based Automated Program Repair problems that collects inter-
mediate state along test case executions. While reducing plateaus is
no guarantee of improving the search landscape, our experimental
results showed that our novel fitness function reduces plateaus
while increasing, with statistical significance, the expressiveness
(finding more repairs) and the efficiency (lowering the number of
evaluations to find a repair) of the search. We show that this fitness
function increases the granularity of the fitness evaluation, better
differentiating between individuals, and reducing the number of
plateaus in the search space. We also show that, practically, our pro-
posed fitness function increases the expressiveness and efficiency
of GenProg.

The remainder of this paper is organized as follows. Section 2
introduces key concepts that are necessary to understand our contri-
bution and presents a set of related work that improved GenProg’s
algorithm. Section 3 presents the main contribution of this paper,
using an illustrative example. Section 5 presents and analyzes our
experiments. We conclude and discuss opportunities for future
work in Section 6.

2 BACKGROUND AND RELATED WORK

This section introduces key background to understanding our pri-
mary contributions, and presents related work, primarily focussed

Eduardo Faria de Souza, Claire Le Goues, and Celso Gongalves Camilo-Junior

Yes

Generate Found Selection
Start Coverage initial fis? No»| Crossover
population ’ Mutation
Fitness

Figure 1: GenProg’s algorithm.

on previous research on improving GenProg’s underlying GP-based
program repair algorithm.

2.1 Automated Program Repair

Automated Program Repair aims to fix software bugs with minimal
or no human intervention. As a domain, such techniques seek to
lower maintenance costs and enable systems to be more resilient
to bugs and unexpected situations [4]. The fix is often encoded
as a set of incremental changes to the source code [10, 16]. These
changes aim to transform an inadequate behavior (the bug) to the
expected behavior. A test suite is commonly used as an oracle to
the repair process. We refer to the negative test cases as those that
encode the bug and are failing on the initial (unmodified program).
We refer to the positive test cases as those the unmodified program
initially pass, and that encode desired behavior that should not
regress [13, 23]. A variety of techniques for automatic program
repair have been proposed in the literature, especially in the past
5-10 years (e.g., Long and Rinard [14], Mechtaev et al. [17], Perkins
et al. [21], Xuan et al. [27], among others). We focus on GenProg
(described next), one of a class of techniques for program repair
that rely primarily on stochastic search (e.g., among others, Kim
et al. [8], Le et al. [9], Le Goues et al. [13]).

2.2 GenProg

GenProg takes as input program source code and a test suite with
at least one failing test case. Given this input, GenProg performs
an initial coverage analysis, applying a standard statistical fault
localization [1, 7] to identify the statements that are more likely
to contain the bug in question. It uses this information to weight
the statements for modification. The genetic algorithm proceeds
over multiple generations. Each individual is a collection of edit
operations, or a patch. A fix is patch that, when applied to the
source code, produces a program that passes all provided test cases.
That is, such a patch transforms the inadequate behavior into the
expected one. New individuals and populations are created using
domain-specific instantiation of common GP operators, including
Selection, Mutation, and Crossover. Figure 1 shows the algorithm
expressed as a flowchart.

The fitness function evaluates each variant as the weighted sum
of the test cases that a modified program passes, i.e., it applies each
test case and it verifies whether the modified program displays the
desired behavior. This evaluation only considers the final output of

A Novel Fitness Function for Automated Program Repair Based on Source Code Checkpoints GECCO ’18, July 15-19, 2018, Kyoto, Japan

the program. A variant is considered a repair when all test cases
pass [10]. We refer to this function as GenProg’s canonical fitness.

To date, GenProg’s representation and fitness function have
been improved to increase efficiency and scalability, but the overall
model remains the same. The two primary improvements include
(1) replacing the Abstract Syntax Tree (AST) representation with
a patch representation, and (2) introducing a fitness subsampling
technique:

(1) Patch representation. The initial representation of a vari-
ant in this GP domain [25] was the entire AST of the original
program with modifications. However, this representation
does not scale to handle large programs. This motivated the
patch-based representation, which treats an individual as a
list of changes with respect to the original program. To eval-
uate a variant, the changes are applied to a copy of the input
program, and producing a modified version that is run on the
provided test cases. The patch representation is slightly but
measurably more effective than its AST predecessor [10].

(2) Fitness sampling. Many programs have a test suite con-
sisting of many test cases; executing the whole suite for
every variant is costly and naive, since most test behavior
is unaffected by a given change. Thus, the other major im-
provement to the canonical fitness function in prior work
introduced a subsampling technique where initially only a
subsample of the positive (initially passing) tests and all the
negatives (initially failing) tests are applied [5]. If the individ-
ual succeeds on all the tests in the subsample, the remaining
positive test cases are executed.

We can model the GenProg search space as a search-based prob-
lem as follows. Let op be an operation search space composed of
three elements, append, swap,? and delete; p is the pool of state-
ments used to compose a fix; s are the statements in the source
code; and n the number of edit operations that are necessary to
constitute a fix. The search space cardinality is then given by:

(lopl - Ipl - Is)"

As an example of how big this search is space is, a program with
one million statements (p), of which 5% may possibly embody a
fix (s) constituted by 3 edit operations (n), results in a search space
with 3.375 - 1030 possible solutions.

Given the size of the search space and the cost involved in testing
each possible solution (compiling and applying test cases), even
with domain-specific restrictions and probabilities (informed by
fault localization, for example), ideally, the genetic algorithm search
should be carefully guided to avoid local maxima, or search plateaus.

2.3 Related Work

To the best of our knowledge, the only previous technique that con-
siders an alternative fitness function besides test cases is HDRepair [9].
HDRepair explores single-mutation fixes and scores intermediate
solutions via similarity to a database of historical patches, in the
interest of improving patch quality. While promising, this approach
does not address the established problem of fitness plateaus in evo-
lutionary program repair for patches of arbitrary length [6]. Beyond

2Some literature introduces a comparable replace operator instead of swap.

this, we focus on previous work that improves other elements of
GenProg’s genetic algorithm, or discusses guidelines for fitness
functions in the Program Repair context.

Oliveira et al. [20] presents new crossover operators that ex-
plores the locality of the search spaces in the patch, increasing
GenProg expressiveness. Subsequent work further reformulated
the representation (subpatch), crossover, and mutation operators,
with experimental results showing improvement in search success
and efficiency [19].

As noted above, Fast et al. [5] first presented the subsampling
approach for fitness evaluation (now canonical in GenProg applica-
tions). They proposed a dynamic predicate-based fitness function
to smooth GenProg’s search landscape. It was designed to approxi-
mate the distance between an individual and a potential repair. The
distance metric was based on a linear regression model that was
trained with 1.772 points and used fourteen known repairs that
served as reference. They further sought to establish general guide-
lines for a generic fitness function based on formal specifications.

Le Goues et al. [10] demonstrated the importance of the patch-
based representation over the AST-based version used in the previ-
ous work [25], discussed above.

None of these works are concerned with modeling a new fitness
function for GenProg. The Checkpoints fitness function could be
used to aggregate other GA operators, such as those proposed
by Oliveira et al. [20]. The modifications in the fitness function
presented by Le Goues et al. [10] are related to performance and it
does not reside within our scope. Although Fast et al. [5] proposed
a method to smooth the search landscape, it does not generalize
beyond a single case study and it relies on linear regression and an
excess of training data to create a metric to differentiate individuals.
Our proposed fitness function generalizes the high-level idea of a
source code inspection to differentiate among individuals without
relying on a model that needs an excess of training data. It also
scales from small to real-world and large programs.

3 CHECKPOINTS

Instrumenting source code to collect run time data when apply-
ing test cases is a form of dynamic analysis. We refer to these special
instructions as checkpoints. The data collected by these checkpoints
allow us to inspect dynamic memory state, values that variables as-
sume through the course of the program execution. Our high-level
goal is to “smooth” GenProg’s search landscape by composing a
new fitness function that leverages data from dynamic analysis to
better differentiate among individuals. This section presents our
main contribution: an improved fitness function based on source
code checkpoints that seeks to mitigate plateaus formed by the
canonical fitness function.

Our novel fitness function instruments every individual’s pheno-
type, its source code, with debug statements we call checkpoints. We
use these checkpoints to track the values of numeric local variables
that are involved in control-flow statements, such as variables in-
side loops, conditionals, or any other variables that might lead the
execution of the program to different paths in the AST. These loca-
tions are determined statically in a pre-processing analysis pass. For
every test case then executed in fitness evaluation, the checkpoints
logs both statement coverage information and the memory state at

GECCO 18, July 15-19, 2018, Kyoto, Japan

Algorithm 1: Checkpoints’ Algorithm.
Input: individual
Output: totalScore
1: faultyStmts « [GetListOfFaultyStmts |
2: debugVariables « [individual debugVariables |
3: totalScore < 0
4: posScore < 0
5. negScore < 0
6: for tc € testCases do
7 score «— 0
8: faultScore — 0
9: maxScore < |debugVariables|
10: for var € debugVariables do

11 if tc.isPositive and var.out = var.origOut then

12: score «— score + 1

13: end if

14: if tc.isNegative and var.out # var.origOut then

15: score «— score + 1

16: end if

17: if var.out # wvar.origOut and var.stmt € faultyStmts
then

18: faultScore — faultScore +1

19: end if

20 end for
21: if tc.isPositive then

. score .
22: posScore « posScore + max(;21 soors» tc.canonicalOut)
23: else
24: if score # maxScore then
- — 0.4 % faultScore

) wr = 0. |faultyStmts|
26: negScore < negScore+max(0.5+wr, tc.canonicalOut)
27: else
28: negScore < negScore + tc.canonicalOut
29: end if
30: endif
31: end for

posScore+negScore

32: totalScore «

|tc.posTcs|+|tc.negTcs|
33: return totalScore

each instrumented point. This provides complete information for
both program control- and data-flow.

Algorithm 1 shows how we use the set of faulty statements
(identified by the fault localization step) and the logged coverage
and memory state information to compose the checkpoints metric,
representing individual fitness. For each test case, our metric counts
changes in tracked variable values. We expect that the changes made
by an individual to the original source code generally do not affect
variables touched by the passing (positive) test cases. However,
we do expect the variables in faulty statements to change. Line 11
counts changes on the positive test cases; Line 14, the negative.
Changes in statements covered by the failing test cases are also
tracked (Line 18).

After counting the changes, we score the behavior for every con-
sidered test case. If the test case passed, we do not need to look the
internals of the individual, so we score it with 1. Positive test cases

O 0 N NG R W N =

N e e e
B W N = O

Eduardo Faria de Souza, Claire Le Goues, and Celso Gongalves Camilo-Junior

Listing 1: Buggy prime computation.

int is_prime(int
if (n% 2
return n

}
int d =
while (

+

=0)
return 0;
candidate insertion

return 1;

are scored according to the proportion of variable values that did
not change with respect to the unmodified program (Line 22). For
negative test cases, we provide a bonus score (of 0.5) for individuals
that only change variable values along the faulty path (Line 26). We
complete the negative score with an additional bonus of 0.4+ % of
change that measures how much change was made in the desired
location (Line 25). The positive and the negative scores are summed.
Our goal in selecting these constants (0.4 and 0.5) is to induce some
change in the faulty code without leading to new bugs. These con-
stants thus heuristically seek to balance the competing goals of
changing undesired behavior (0.4) while reinforcing patches that
do not break previously desired behavior (0.5).

Finally, the canonical fitness score is calculated with information
from the output of each test case (Line 32). Our proposed fitness
calculates the score of an individual as the weighted sum of the
canonical fitness and the checkpoints score (0.7 - canonical + 0.3 -
checkpoints). These weights are chosen to induce the search to
privilege the macro behavior (i.e., if the individual passed the test
cases), while including the internal differentiation element.

4 ILLUSTRATIVE EXAMPLE

We now present an example of how to calculate fitness for a single
checkpoint in an illustrative example?. Consider the example buggy
code in Listing 1, which should return 0 if input n is prime and 1
otherwise. One way to fix this code is to copy the if-block on line
X and insert it at line Y. We will perform the fitness computation
for a variant that does not fix the bug (copying the computation
on line N to line M, shown as an insertion in the code sample). We
consider two test cases: (1) n = 123 = 0 and (2) n = 125 = 0. Both
the original program and the considered variant pass (1) but fail (2).

4.1 Check pointing and applying test cases

The first step is to place checkpoints relative to variables of interest,
namely those effecting control-flow statements. Such statements
are logged with checkpoints before and after execution. Listing 2
shows such debug instructions inserted in one statement of our
example.

3The concept generalizes naturally to an arbitrary number of checkpoints.

A Novel Fitness Function for Automated Program Repair Based on Source Code Checkpoints GECCO ’18, July 15-19, 2018, Kyoto, Japan

Listing 2: A sample statement with checkpoints.

// log_checkpoint(stmt_id, var_name, var_state);
log_checkpoint("7", "d", d);

log_checkpoint("7", "n", n);
while(d «+ d <= n) {

{ ...}
}

log_checkpoint("7", "d", d);

log_checkpoint("7", "n", n);

Table 1: Reference values and Memory states for the sample
variables.

Var Neg.Ref. Neg. Out

d 5 5
Before 125 125
d 17 13
After 125 125

Table 1 provides the intermediate values tracked by the check-
points. Column Neg. Ref. shows intermediate values of the original
source code for the negative test case. Column Neg. Out shows the
intermediate values of the (incorrect) variant for the negative test
case. The positive test case does not produce checkpoints because
it does not touch the instrumented statement.

The canonical fitness uses only test case success or failure com-
puted from program output. So, as we apply the test cases and
gather data from the internal states, we can also store the outputs
and compute the canonical score (the tc.canonicalOut variables in
the checkpoints algorithm).

4.2 Calculating the fitness score

With the data collected in the previous step, we are able to apply
Algorithm 1. Assume fault localization has identified lines 8 and 9
as faulty. The algorithm tracks variables d and n, implicated/used
in these lines.

The first loop of the algorithm (Line 6) iterates over the result of
each test case. When analyzing the positive test cases (Line 11), score
is incremented twice because the statement did not deviate from
the reference values. For the negative test case (Line 14), score will
be incremented only by 1, because it is different from the reference
values in one variable. The variant also presented different values
of a variable inside a faulty statement, so faultScore is incremented
to 1.

Now we calculate the posScore and negScore variables, that will
compose the final score (totalScore). In our example, as we only
have one positive test case and it kept positive in our snippet, the
posScore will receive 1 as its value (corresponding to the tc.canoni-
calOut variable). However, as the negative score remained negative,
we do not score it with canonical output. We bonus the snippet
with 0.5+ wr (Line 25). The wr bonus will receive 0.4 - % The final
negScore will be 0.5 + (0.4 - %) = 0.7. The final checkpoints score
(totalScore) is thus

1+0.7
1+1

=0.85

The individual fitness score is a weighted sum of the canonical
score and the checkpoints score:

0.7-1+0.3-0.85=0.955

The more lines of code, the more likely our approach is to better
differentiate among individuals, as it will leverage the internal states
to compare them.

5 EXPERIMENTS

This section describes our evaluation and results. The results of
our experiments can be found at https://github.com/eduardodx/
gecco2018-checkpoints.

5.1 Setup

Dataset. Our goal in benchmark selection is to have a diversity
of projects and project size, to support arguments of applicability
and generalizability. We conducted our experiments on subsets
of two well-known benchmarks for Automated Program Repair,
IntroClass and ManyBugs [12], shown in Table 2. IntroClass consists
of six small programming assignments developed by undergraduate
students of a C programming course. ManyBugs is a collection of
nine large and mature open source software. In the IntroClass
dataset, the course grading system stored all intermediate versions
of code produced by students. In our experiments we used only the
last version that contained a bug and had at least one failing and
one passing test case. ManyBugs was introduced in 2015, but the
scenarios were extracted from 2012 in an environment that can be
hard to reproduce. We selected three projects we were best able
to reproduce: Gzip, a data compression utility; Libtiff, an image
processing library; and Wireshark, a network packet analyzer.

Settings. We run GenProg on each IntroClass bug with 20 seeds.
Each execution (seed) was configured to run 30 generations with 40
individuals and 4 elitists each generation. Each ManyBugs scenario
had 10 executions with 10 generations, 40 individuals each gen-
eration, and 4 elitists per generation. Those are same parameters
as Le Goues et al. [12], with exception of the elitism component.
The search budget (1,200 fitness evaluations for IntroClass execu-
tions and 400 evaluations for ManyBugs executions) is due the
prohibitive cost of each fitness evaluation, where it is necessary to
compile and run an entire test suite for each individual (especially
prohibitive on the ManyBugs scenarios).

We ran our experiments on an Intel® Xeon® CPU E5-2660 v3
@ 2.60GHz with 40 Threads and 128GB RAM.

Research Questions. We seek to answer the following questions:

e RQ1: Does aggregating checkpoints’ data in the fitness func-
tion successfully reduce search space plateaus?

e RQ2: Does the checkpoints-based fitness function improve
the expressiveness and the efficiency of GenProg, a GP-based
automated program repair technique?

https://github.com/eduardodx/gecco2018-checkpoints
https://github.com/eduardodx/gecco2018-checkpoints

GECCO 18, July 15-19, 2018, Kyoto, Japan

Eduardo Faria de Souza, Claire Le Goues, and Celso Gongalves Camilo-Junior

Table 2: IntroClass and Manybugs benchmarks
With information from [12].

Benchmark Program LOC Bugs Description

Checksum 13 19 checksum of a string
Digits 15 21 digits of a number

IntroClass Grade 19 30 grade from score
Median 24 25 median of 3 numbers
Smallest 20 25 min of 4 numbers
Syllables 23 22 count vowels
Gzip 491k 5 data compression utility

ManyBugs Libtiff 77k 24 image processing library

Wireshark 2,814k

8 network packet analyzer

5.2 RQ1: Plateaus

To answer our first Research Question, we analyzed each fitness
function’s ability to differentiate (via fitness score) individuals with
distinct genetic material, thereby reducing the number of fitness
plateaus. Table 3 shows the percentage of individuals in a popula-
tion that share a fitness value with at least one other individual in
that population. Lower is better, signifying a function that more
effectively differentiates distinct individuals. We run Wilcoxon
signed-rank test [26] on every set of results to test for statisti-
cal significance (p < 0.05) whether checkpoints fitness is lesser
than canonical fitness.

Because our proposed fitness function leverages data from in-
ternal program state rather than test case passing/failure alone, it
more effectively differentiates candidate solutions. Table 3 demon-
strates: in a statistically significant manner, the checkpoints fitness
function more effectively differentiated individuals on 5 out of 6
IntroClass problems and 2 out of 3 ManyBugs problems.

Overall, the checkpoints-based fitness better differentiated 83.3%
of the problems in IntroClass with statistical significance. From
this subset, the best case was Smallest, where it could differentiate
14.88% more than the canonical fitness function. The worst set
of problems was taken from the Grade program, where it only
differentiated 0.72% more than the canonical fitness. On average,
our proposed fitness reduced the number of fitness plateaus on
IntroClass problems by 5.52% overall.

The results for real-world programs in Manybugs showed that
checkpoints fitness reduced plateaus in 67% of the problems. It
reduced plateaus in Gzip and Wireshark by 18.73% and 12.71%,
respectively, with statistical significance. Although not presenting
statistical significance for Libtiff, its results presented a reduction
of 5.21% in the number of plateaus.

Overall, our new fitness function reduces the number of fitness
plateaus in most of the considered problems, ranging from small
and synthetic problems to large and real-world programs.

5.3 RQ2: Expressiveness and Efficiency

We define expressiveness as the search algorithm’s ability to find re-
pairs as a proportion of the successful random seeds?. For efficiency,

“We use the term expressiveness because effectiveness does not apply in our context.
Effectiveness would apply if we had a semantic oracle that could ensure a repair has

we consider the number of fitness evaluations required to find a
fix. So, we answer the second Research Question by comparing
the expressiveness and efficiency of our proposed fitness function
against the canonical function. Table 4 shows results.

Expressiveness. The “Bugs fixed” and “Runs w. fix” columns in
Table 4 measure search expressiveness; higher is better. The pro-
posed fitness increases the number of repairs found for bugs in
50% of the IntroClass problems. It also increases the number of
repairs per seed in 67% of the cases, ranging from an increase of
3.65% (Smallest) to 76.92% (Syllables), with an average of 35.68% of
increase per problem.

Our most interesting results are on ManyBugs. As they are real-
world programs with thousands of lines of code, their bugs are more
complex to solve automatically. Our fitness function leverages the
characteristics of these benchmarks, problems with more test cases
and more lines of code, to generate more data that composes the
final score of each variant in a more detailed manner and with
fewer plateaus. The resulting population is better differentiable by
the selection operator and individuals with good genetic material
are carried to the next generations more frequently. The search is,
then, less likely to stay stagnant in certain areas of the search space
and can traverse it more efficiently.

Our proposed function found a repair to a Gzip bug where the
canonical fitness failed. This means a 100% increase in the expres-
siveness to the Gzip results. Gzip also saw the number of repairs
per run increased as well, up to a factor of 150%. For the other sce-
narios, the checkpoints fitness found repairs for the same bugs as
the canonical function, but with more repairs per run. The average
increase in repairs per seed for our proposed fitness function is
13.29%. These results show that our proposed fitness can guide the
search to new areas of the search space (finding repairs to previ-
ously unsolved bugs) and it is more robust in terms that it increases
the likelihood of finding a repair given the same set of seeds.

Efficiency The “Avg. Evals” columns in Table 4 shows the average
number of evaluations to find a repair for each fitness function.
Lower is better. The checkpoints fitness improved the search ef-
ficiency for every problem in IntroClass. The speedups ranged

the correct semantic with no overfitting. As we are bounded by test cases as an oracle,
and they are of varying quality, we cannot measure effectiveness.

A Novel Fitness Function for Automated Program Repair Based on Source Code Checkpoints GECCO ’18, July 15-19, 2018, Kyoto, Japan

Table 3: IntroClass and Manybugs: the average percentage of individuals in a population that have at least one other with the

same fitness score.

Canonical Checkpoints
Benchmark Program Avg StdDev Avg StdDev p-value
Checksum 96.55% 15.46% 95.75% 17.46% 0.1815
Digits 91.75% 20.48% 90.23% 22.23% 0.0026
Grade 99.92% 0.17% 99.20% 0.49% p < 0.001
IntroClass .
Median 94.52% 18.26% 89.30% 23.42% p < 0.001
Smallest 76.73% 32.46% 61.85% 34.47% p < 0.001
Syllables 98.13% 8.58% 92.88% 15.07% p < 0.001
Gzip 99.16% 2.57% 80.43% 19.05% p < 0.001
ManyBugs Libtiff 78.26% 30.65% 73.05% 31.31% 0.0752
Wireshark 93.62% 16.73% 80.91% 19.81% p < 0.001

from 2.01 (Digits) to 5.98 (Smallest). The average speed up of our
proposed fitness function over the canonical function is 3.9.

The speedups are even more significant on ManyBugs. Our pro-
posed fitness function achieved a 63.10 speedup for Wireshark, a
program with hundreds of test cases and over two million lines of
code, and 40.58 for Libtiff, another program with 70 thousand lines
of code. This achievement is important for GP-based Automated
Program Repair techniques because it makes it possible to work
with larger programs or to increase the number of generations and
the population, thus better exploring the search space.

Our results show that both expressiveness and efficiency are
improved when using checkpoints fitness function. Its use leads
the search algorithm to be more expressive (repairing more bugs),
robust (more likely to find a repair in a run), and efficient (lower
evaluations necessary to find a repair).

6 CONCLUSION

GenProg, a behavioral method for Automated Program Repair, has
a canonical fitness function that is not able to properly differenti-
ate between individuals, evaluating variants with distinct genetic
material with the same fitness score (plateaus). This can paralyze
the search in certain regions of the search space. We propose a new
fitness function based on intermediate code checkpoints, aiming to
better differentiate between individuals. Our experimental results
showed, with statistical significance, that our proposed fitness func-
tion reduces the occurrence of plateaus, better guiding the genetic
algorithm; finds more repairs, both in number of bugs and runs;
and increases the efficiency of the search.

As for future work, we aim to reduce the noise in the Checkpoints
fitness by placing debug statements only in statements that are more
likely to contain bugs, as shown by the fault-localization process.
We also plan to include another term to the fitness function that
asses source code quality based on static analysis.

REFERENCES

[1] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2006. An Evaluation
of Similarity Coefficients for Software Fault Localization. In Proceedings of the
12th Pacific Rim International Symposium on Dependable Computing (PRDC "06).
Washington, DC, USA, 39-46. https://doi.org/10.1109/PRDC.2006.18

[2] Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone. 1998.
Genetic programming: an introduction. Vol. 1. Morgan Kaufmann San Francisco.

[3] MITRE Corporation. 2018. The Common Vulnerabilities and Exposures (CVE).
https://cve.mitre.org/. (2018). (Visited on 01/10/2018).

[4] Favio DeMarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. 2014.

Automatic Repair of Buggy if Conditions and Missing Preconditions with SMT.

In Proceedings of the 6th International Workshop on Constraints in Software Testing,

Verification, and Analysis (CSTVA 2014). ACM, New York, NY, USA, 30-39. https:

//doi.org/10.1145/2593735.2593740

Ethan Fast, Claire Le Goues, Stephanie Forrest, and Westley Weimer. 2010. De-

signing Better Fitness Functions for Automated Program Repair. In Proceedings

of the 12th Annual Conference on Genetic and Evolutionary Computation (GECCO

’10). ACM, New York, NY, USA, 965-972. https://doi.org/10.1145/1830483.1830654

Stephanie Forrest, Westley Weimer, ThanhVu Nguyen, and Claire Le Goues. 2009.

A genetic programming approach to automated software repair. In Genetic and

Evolutionary Computation Conference, Franz Rothlauf (Ed.). ACM, 947-954.

James A. Jones, Mary Jean Harrold, and John T. Stasko. 2001. Visualization for

Fault Localization. In in Proceedings of ICSE 2001 Workshop on Software Visualiza-

tion. Toronto, ON, Canada, 71-75.

Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Auto-

matic Patch Generation Learned from Human-Written Patches. In International

Conference on Sofware Engineering (ICSE °13). 802-811.

Xuan Bach D Le, David Lo, and Claire Le Goues. 2016. History Driven Program

Repair. In Software Analysis, Evolution, and Reengineering (SANER ’16). 213-224.

Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.

2012. A systematic study of automated program repair: Fixing 55 out of 105 bugs

for $8 each. In Software Engineering (ICSE), 2012 34th International Conference on.

IEEE, 3-13. https://doi.org/10.1109/ICSE.2012.6227211

Claire Le Goues, Stephanie Forrest, and Westley Weimer. 2013. Current challenges

in automatic software repair. Software quality journal 21, 3 (2013), 421-443.

[12] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass Benchmarks for Automated Repair of C Programs. IEEE Transactions
on Software Engineering (TSE) 41, 12 (December 2015), 1236-1256. https://doi.
org/10.1109/TSE.2015.2454513 http://dx.doi.org/10.1109/TSE.2015.2454513DOI:
10.1109/TSE.2015.2454513.

[13] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A generic method for automatic software repair. Software Engineering,
IEEE Transactions on 38, 1 (Jan 2012), 54-72. https://doi.org/10.1109/TSE.2011.104

[14] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning
Correct Code. In Symposium on Principles of Programming Languages (POPL ’16).
298-31.

[15] Matias Martinez and Martin Monperrus. 2012. Mining repair actions for guiding
automated program fixing. Ph.D. Dissertation. Inria.

[16] Matias Martinez and Martin Monperrus. 2013. Mining Software Repair Models for
Reasoning on the Search Space of Automated Program Fixing. Empirical Software
Engineering Online First (Sept. 2013). https://doi.org/10.1007/s10664-013-9282-8
Accepted for publication on Sep. 11, 2013.

[17] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scal-
able Multiline Program Patch Synthesis via Symbolic Analysis. In International
Conference on Software Engineering (ICSE ’16). 691-701.

[18] Martin Monperrus. 2018. Automatic software repair: a bibliography. ACM
Computing Surveys (CSUR) 51, 1 (2018), 17.

[19] Vinicius Paulo L. Oliveira, Eduardo Faria de Souza, Claire Le Goues, and Celso G.
Camilo-Junior. 2018. Improved representation and genetic operators for linear ge-
netic programming for automated program repair. Empirical Software Engineering

—
&

G

[7

8

[

=
2

[11

https://doi.org/10.1109/PRDC.2006.18
https://cve.mitre.org/
https://doi.org/10.1145/2593735.2593740
https://doi.org/10.1145/2593735.2593740
https://doi.org/10.1145/1830483.1830654
https://doi.org/10.1109/ICSE.2012.6227211
https://doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1109/TSE.2015.2454513
http://dx.doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1007/s10664-013-9282-8

GECCO 18, July 15-19, 2018, Kyoto, Japan Eduardo Faria de Souza, Claire Le Goues, and Celso Gongalves Camilo-Junior

Table 4: IntroClass and Manybugs: Expressiveness and Efficiency.

Canonical fixes Checkpoints fixes
Benchmark Program Bugs Runs
Bugs fixed Runsw.fix Avg.evals. Bugsfixed Runsw.fix Avg. evals.
Checksum 19 380 2 27 240.37 3 32 60.68
Digits 21 420 7 55 189.63 8 79 93.93
IntroClass Grade 30 600 0 0 0 0 0 0
Median 25 500 6 76 164.68 6 75 31.13
Smallest 25 500 25 466 637.52 25 483 106.56
Syllables 22 440 1 13 156.92 2 23 69.39
Gzip 5 50 1 4 54.75 2 10 66.80
ManyBugs Libtiff 24 240 17 114 2220.65 17 128 54.71
Wireshark 8 80 2 19 1104.42 2 20 17.5
Total 179 3,210 61 774 4,768.94 65 850 500.7

(25 Jan 2018). https://doi.org/10.1007/s10664-017-9562-9

[20] Vinicius Paulo L. Oliveira, Eduardo F. D. Souza, Claire Le Goues, and Celso G.
Camilo-Junior. 2016. Improved Crossover Operators for Genetic Programming for
Program Repair. In 8th International Symposium Search Based Software Engineering
(SSBSE 2016), Federica Sarro and Kalyanmoy Deb (Eds.). Springer International
Publishing, 112-127. https://doi.org/10.1007/978-3-319-47106-8_8

[21] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin Rinard.
2009. Automatically patching errors in deployed software. In ACM Symposium
on Operating Systems Principles (SOSP °09). 87-102.

[22] Tricentis. 2017. Software Fail Watch: 5th Edition. (2017). https://www.tricentis.

com/software-fail-watch/

Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu Nguyen. 2010.

Automatic Program Repair with Evolutionary Computation. Commun. ACM 53,

5 (May 2010), 109-116. https://doi.org/10.1145/1735223.1735249

[24] W. Weimer, Z. P. Fry, and S. Forrest. 2013. Leveraging program equivalence
for adaptive program repair: Models and first results. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 356-366. https:
//doi.org/10.1109/ASE.2013.6693094

[25] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically Finding Patches Using Genetic Programming. In International
Conference on Software Engineering (ICSE 09). 364-374.

[26] Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics
bulletin 1, 6 (1945), 80-83.

[27] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clément, Sebastian Lame-
las Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2017.
Nopol: Automatic Repair of Conditional Statement Bugs in Java Programs. IEEE
Transactions on Software Engineering 43, 1 (2017), 34-55.

[28] Michael Zhivich and Robert K Cunningham. 2009. The Real Cost of Software
Errors. IEEE Security & Privacy 7, 2 (March 2009), 87-90. https://doi.org/10.1109/
MSP.2009.56

[23

https://doi.org/10.1007/s10664-017-9562-9
https://doi.org/10.1007/978-3-319-47106-8_8
https://www.tricentis.com/software-fail-watch/
https://www.tricentis.com/software-fail-watch/
https://doi.org/10.1145/1735223.1735249
https://doi.org/10.1109/ASE.2013.6693094
https://doi.org/10.1109/ASE.2013.6693094
https://doi.org/10.1109/MSP.2009.56
https://doi.org/10.1109/MSP.2009.56

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Automated Program Repair
	2.2 GenProg
	2.3 Related Work

	3 Checkpoints
	4 Illustrative Example
	4.1 Check pointing and applying test cases
	4.2 Calculating the fitness score

	5 Experiments
	5.1 Setup
	5.2 RQ1: Plateaus
	5.3 RQ2: Expressiveness and Efficiency

	6 Conclusion
	References

