
Empir Software Eng (2018) 23:2980–3006
https://doi.org/10.1007/s10664-017-9562-9

Improved representation and genetic operators for linear
genetic programming for automated program repair

Vinicius Paulo L. Oliveira1 · Eduardo Faria de Souza1 ·
Claire Le Goues2 · Celso G. Camilo-Junior1

Published online: 25 January 2018
© Springer Science+Business Media, LLC 2018

Abstract Genetic improvement for program repair can fix bugs or otherwise improve
software via patch evolution. Consider GenProg, a prototypical technique of this type. Gen-
Prog’s crossover and mutation operators manipulate individuals represented as patches. A
patch is composed of high-granularity edits that indivisibly comprise an edit operation,
a faulty location, and a fix statement used in replacement or insertions. We observe that
recombination and mutation of such high-level units limits the technique’s ability to effec-
tively traverse and recombine the repair search spaces. We propose a reformulation of
program repair representation, crossover, and mutation operators such that they explicitly
traverse the three subspaces that underlie the search problem: the Operator, Fault and Fix
Spaces. We provide experimental evidence validating our insight, showing that the opera-
tors provide considerable improvement over the baseline repair algorithm in terms of search
success rate and efficiency. We also conduct a genotypic distance analysis over the various
types of search, providing insight as to the influence of the operators on the program repair
search problem.

Communicated by: Martin Monperrus and Westley Weimer

� Vinicius Paulo L. Oliveira
viniciusp.comp@gmail.com

Eduardo Faria de Souza
eduardosouza@inf.ufg.br

Claire Le Goues
clegoues@cs.cmu.edu

Celso G. Camilo-Junior
celso@inf.ufg.br

1 Instituto de Informatica, Universidade Federal de Goias (UFG), Goiânia, Brazil

2 School of Computer Science, Carnegie Mellon University (CMU), Pittsburgh, PA 15213, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9562-9&domain=pdf
mailto:viniciusp.comp@gmail.com
mailto:eduardosouza@inf.ufg.br
mailto:clegoues@cs.cmu.edu
mailto:celso@inf.ufg.br

Empir Software Eng (2018) 23:2980–3006 2981

Keywords Automatic software repair · Automated program repair · Genetic
improvement · Genetic programming · Crossover operator · Mutation operator

1 Introduction

Maintaining high quality software as it evolves is an expensive problem, to the point that it
typically dominates software life-cycle cost (Pressman 2001). Software evolution consists
of a number of interrelated activities, including bug finding and fixing, and feature imple-
mentation. In practice, these activities are performed manually, by expert human developers.
However, substantial evidence suggests that the number of person hours required simply
to deal with the volume of bugs reported for a particular project is impracticable; more, of
course, are required for feature development. As a result, projects ship with both known
and unknown defects (Liblit et al. 2005), and software quality remains a pressing practical
concern (Britton et al. 2013).

This problem motivates a growing body of recent work in Search-Based Software Engi-
neering (SBSE) (Harman et al. 2012) that applies meta-heuristic techniques like Genetic
Programming (Koza 1992) to improve software by evolving patches to source code. Among
other applications, such techniques have been used to repair defects (Le Goues et al. 2012b;
Arcuri and Yao 2008; Arcuri 2011), implement new features by porting functionality from
one program to another (Petke et al. 2014; Barr et al. 2015), improve performance char-
acteristics like energy consumption (Bruce et al. 2015; Schulte et al. 2014), or otherwise
improve or mitigate the cost of the testing or bug fixing process (Oliveira et al. 2013; Mon-
cao et al. 2013; Machado et al. 2016; Freitas et al. 2016). The core goal in these techniques
is to search the solution space of potential program improvements for edits to an input
program that, e.g., fix a bug without breaking other functionality, typically as revealed by
tests.

A key innovation in this domain is to represent candidate solutions as small edit pro-
grams, or patches to the original program. Early work adapted traditional tree-based
program representations from the genetic programming literature to evolve entire programs
toward particular quality goals (Weimer et al. 2009; Arcuri and Yao 2008). By contrast, the
patch representation has significant benefits to scalability (and, albeit to a lesser degree,
expressive power) (Le Goues et al. 2012), and genetic improvement techniques that use
it have been applied to substantially larger programs than previously considered (e.g.,
wireshark, php, python, libtiff (Le Goues et al. 2015); VLC (Barr et al. 2015)).
The patch representation is now commonly used across the domain of Genetic Improve-
ment, a field which treats a program itself as genetic material and attempts to improve it with
respect to a variety of functional and quality concerns (Silva and Esparcia-Alcázar 2015).

Our key contention in this article is that, despite its importance to scalability, the patch
representation as currently formulated fundamentally overconstrains the program improve-
ment search space by irreducibly conflating its constituent subspaces. This results in a more
and needlessly difficult-to-traverse landscape. Consider the patch representation used in
GenProg (Weimer et al. 2009; Le Goues et al. 2012b), a well-known program repair method
that uses a customized Genetic Programming meta-heuristic to explore the solution space
of possible bug fixing patches; its treatment of patches is prototypical, and thus illustrative.
The genome in the GenProg search approach consists of a variable-length sequence of tree-
based edits with respect to the original program code. Each gene is a single edit of the form
Operation(Fault, Fix). Operation is an edit operator (one of insert, delete, or replace;
swap has also been investigated); Fault captures the modification point for the edit, or the

2982 Empir Software Eng (2018) 23:2980–3006

fault location; and Fix represents the statement that will be inserted when necessary.1 Each
gene thus composes information along the three subspaces underlying the program repair
search problem (operator, fault, and fix) (Le Goues et al. 2012a; Weimer et al. 2013).

This high gene granularity may unhealthily constrain the search problem, influencing
the design of both the mutation and crossover operators. Mutation operators enable search
space exploration by identifying new beneficial solution properties (Rothlauf 2011). This
helps avoid local optima. However, at this granularity level, mutation may only make large
changes to individual candidate solutions, via the construction of indivisible edits. Crossover
creates new candidate solutions by combining parts of previous candidates (enabling
exploitation of partial solutions). One feature of a healthy fitness landscape is a set of small,
low-order building blocks that the crossover operator can identify, recombine, and propagate
over the course of evolution (Holland 1992). For the purposes of program improvement,
each subspace may contain independently relevant information, but the crossover opera-
tor cannot independently recombine them. That is, partial templates or schema of relevant
information from a single subspace cannot be independently reused.

We propose a novel subpatch representation, a lower-granularity representation for
search-based program improvement that enables a less constrained search strategy without
substantial loss to scalability. This representation continues to be linear, but subspace values
are manipulable. We speculate that such a representation will allow a meta-heuristic search
strategy to more effectively explore the space, by enabling direct traversal and recombina-
tion of the constituent subspaces. We assess this representation along several dimensions by
instantiating it in the GenProg technique for automated defect repair, in the context of new
operators for crossover and mutation, which we assess in terms of their impact on speed
search and success. Thus, the main contributions of this article are:

– The subpatch representation, a new representation for genetic program improvement
that enables explicit traversal of and recombination between repair subspaces.

– Six new crossover operators that leverage this representation.
– A new mutation operator that manipulates search subspaces individually.
– A novel per-individual memory method to fix “broken” individuals.
– analysis of genotypic distance to surface and identify important characteristics of the

novel representations and crossover operators.

Some of these points were previously presented (Oliveira et al. 2016). In our previous
work, we proposed and evaluated the new subpatch representation for GenProg specifically
in the context of our novel crossover operators. This article extends those contributions to
include:

– Additional quantitative results. We have increased the number of buggy programs in
our evaluation from 43 to 110 examples, increasing to 30 random runs per program
per repair effort. This enables stronger claims of statistical significance. We have also
added a larger, real world example program to our dataset to substantiate our scalability
claims.

– Additional qualitative results. We assess patches produced for the IntroClass dataset
on the available independent held-out test suites provided with that benchmark, to
mitigate and assess the risk of low-quality patches. We also describe several patch
examples.

1 Note that GenProg manipulates C programs at the statement-level, but the formulation generalizes to
arbitrary languages and granularity levels.

Empir Software Eng (2018) 23:2980–3006 2983

– A novel mutation operator. We propose and evaluation a new mutation method that
allows for mutation within the search subspaces.

– A novel genetic memory method. Our prior work proposed a method to retain genetic
memory to inform the correction of individuals that the new crossover operators could
“break.” However, our results suggested that the proposed method did not substantially
improve search performance. Here, we revisit genetic memory, proposing to use it on
an individual- rather than pool-level. We empirically show that this formulation, unlike
the prior approach, is effective.

– Distance analysis. We perform an analysis of genotypic distance to understand charac-
teristics underlying the improvement provided by the new representation and crossover
operators.

The remainder of this paper is organized as follows. Section 2 presents background
on genetic programming, in particular (though not exclusively) for program repair.
Section 3 describes our new representation, and the new mutation and crossover operators it
enables, along with a new technique for per-individual “memory.” Section 4 presents exper-
imental setup, results, and discussion. Section 5 discusses related work; we conclude in
Section 6.

2 Background

Search-based program improvement leverages meta-heuristic search strategies, like genetic
programming, to automatically evolve new programs or patches to improve an input pro-
gram. These improvements can be either functional (e.g., bug fixing (Le Goues et al. 2012a),
feature grafting (Langdon and Harman 2015; Barr et al. 2015) or quality-oriented (e.g.,
energy usage (Bruce et al. 2015; Schulte et al. 2014)). We focus on automated program
repair, GenProg in particular, but anticipate that our innovations for representation should
generalize. In this section, we provide background on Genetic Programming in general
(Section 2.1) and its instantiation for repair in GenProg (Section 2.2). We discuss related
work in depth in Section 5.

2.1 Genetic Programming

Genetic Programming Genetic Programming (GP) is a computational method inspired
by biological evolution that traditionally evolves computer programs toward particular func-
tionality or quality goals (Holland 1992; Forrest 1993). At a high level, a GP maintains a
population of program variants, each of which corresponds to a candidate solution to the
problem at hand. The variants are traditionally represented in memory as trees, to which
evolutionary operations are applied. Linear Genetic Programming (LGP) is a special case
of GP which represents programs as a sequence of imperative instructions, which can be
represented in memory linearly (Brameier and Banzhaf 2007). Individuals in the patch rep-
resentation are sequences of tree-based edits with respect to an original program, which can
be considered an instantiation of LGP.

Each individual in a GP/LGP population is evaluated for its fitnesswith respect to a given
objective function. Higher-fitness individuals are more likely to be selected to subsequent
generations. New candidates are produced via domain-specificmutation and crossover oper-
ators, which modify intermediate variants and recombine partial solutions, akin to biological
DNA mutation and recombination. Crossover combines partial solutions, providing for the

2984 Empir Software Eng (2018) 23:2980–3006

exploitation of existing solutions, promoting implicit genetic memory. Mutation enables
exploration, helping the search avoid local optima (Rothlauf 2011).

Search Landscapes A GP is an instance of an Evolutionary Algorithm (EA). In the con-
text of EAs, a schema is a template that identifies a subset of strings (in a GA) or trees
(in a GP) with similarities at certain positions (genes) (Goldberg 1989). The fitness of a
schema is the average fitness of all individuals that match or include it. Holland’s schema
theorem, also called the fundamental theorem of genetic algorithms (Holland 1992), says
that short, low-order schemata with above-average fitness increase exponentially in succes-
sive generations. That is, partial solutions propagate and increase in quantity over the course
of evolution. The schema theorem informs the building block hypothesis, which states that
a genetic algorithm seeks optimal performance through the juxtaposition of such short,
low-order, high-performance schemata, called building blocks. Crossover ideally serves
to combine such schemata into increasingly fit candidate solutions. Mutation can disrupt
building blocks, but also allows the search to find new beneficial characteristics.

Distance Analysis Evolutionary search spaces can be defined topologically, allowing ele-
ments to be measured with respect to one another, e.g., using Manhattan, Euclidean, or
Hamming distances (Rothlauf 2011). Distance analyzes look at characteristics of popula-
tions in terms of distance between individuals, and are commonly used in search based
algorithm research to help clarify and inform improvements to a given problem by high-
lighting convergence behavior, diversity, complexity, locality or uniformity (Kim and Moon
2004). Distance metrics can measure variation between either phenotypic or genotypic fea-
tures (DeJong 1975). Genotypic distance compares individuals based on actual genome or
representation (such as the patch encoding, in our domain). Phenotypic distance looks at the
variant as it is expressed either for or by the fitness function. The latter approach is more
common in practice, since genotypic measures can mask important bitwise diversity that
manifests very differently phenotypically (Morrison and De Jong 2001). However, there
exist domains in which genotypic analysis is informative.

2.2 GenProg for Program Repair

Overview GenProg is a program repair technique predicated on Genetic Programming.
GenProg and GenProg-like techniques have been applied to different languages and abstrac-
tion levels, like Java (Kim et al. 2013; Orlov and Sipper 2011) and compiled code (Schulte
et al. 2010); we focus on GenProg for C (Le Goues et al. 2012a, b; Weimer et al. 2009).
GenProg takes as input a program and a set of test cases, at least one of which is initially fail-
ing. The search goal is a patch to that input program that leads it to pass all input test cases.
Using test cases to define desired behavior and assess fitness is fairly common in research
practice, e.g., Long and Rinard (2016), Qi et al. (2014), Mechtaev et al. (2016), Kim et al.
(2013), and Le et al. (2016). Although tests only partially specify desired behavior, they are
commonly available and provide an efficient mechanism to evaluate intermediate variants
and constrain the search space.

Thus, at a high level, the search generates an initial set population of variants; evaluates
fitness by applying each candidate patch to the initial program and running the result on the
supplied test cases; selects a smaller subset of the population pseudo-randomly, weighted
by fitness, and then generates new variants using mutation and crossover (described next).
This process iterates until either a solution is found or a pre-specified resource limit is
met.

Empir Software Eng (2018) 23:2980–3006 2985

Experimental results demonstrate that GenProg cost-effectively scales to defects in real
world software (Le Goues et al. 2015). However, there remain a large proportion of defects
that it cannot repair. We focus particularly on the way that GenProg’s patch representation
results in a suboptimal fitness landscape for the purposes of a healthy adaptive algorithm.

Search Space The program repair search problem can be formulated along three sub-
spaces (Le Goues et al. 2013; Weimer et al. 2013): the Operation, or the edits that can
be applied; the Fault location(s), or the set of possibly-faulty locations to which edits may
be applied; and the Fix code, or the space of code that can be inserted into the faulty loca-
tion. GenProg constrains this trivially infinite space in several ways: (1) it uses the input
tests to localize the bug to a smaller, weighted program slice (e.g., Jones et al. (2002),
Saha et al. (2011), and Wong et al. (2016)), (2) it uses coarse-grained edit operators at
the C statement level (insert, replace, and delete; swap has also been explored), and (3) it
restricts the generation of fix code to the reuse of code from within the same program or
module, leveraging the competent programmer hypothesis (Martinez and Monperrus 2015;
Barr et al. 2014) while substantially reducing the amount of possible fix code that must be
considered.

Representation GenProg canonically represents individual solutions as a patch composed
of a variable-length sequence of high-granularity edit operations. Figure 1, top, demon-
strates pictorially. Each edit takes the form of Operation(Fault, Fix). Operation is the
edit operator; Fault is the modification (or fault) location; and Fix is the statement to insert
when Operation is a replace or insert.

Mutation A mutation step as applied to an individual variant pseudo-randomly constructs
a new edit operation and then appends it to the existing (possibly empty) list of edits
that describe that variant. A destination statement s is chosen from the set S of permit-
ted statements weighted by the fault localization strategy. Typically, statements executed
exclusively by failing test cases are given a certain weight, while those executed by both
failing and passing test cases are given another. Statements that are not executed by a
failing test case are excluded from mutation. GenProg chooses between each of the three
edit types, typically uniformly at random, and then pseudo-randomly selects Fix code
to complete the edit type as necessary. Fix code is selected from within the program

Fig. 1 Old representation (top); Subpatch representation (middle); simplified (bottom)

2986 Empir Software Eng (2018) 23:2980–3006

under repair, subject to certain semantic constraints (i.e., to avoid moving variables out of
scope).

Crossover Crossover combines information from two parent individuals to produce two
offspring individuals. GenProg uses a one-point crossover over the edits composing each
of the parents. Given two individuals, GenProg selects a random cut point in each, and
then swaps the tails of each edit list to produce two new offspring that each contain edit
operations inherited from both parents. Crossover does not create new edits.

3 Approach

Our goal is to enable efficient recombination of genetic information while maintaining
the scalability and efficiency of the patch representation. The building block hypothesis
states, intuitively, that crossover should be able to recombine very small schemata into small
schemata of generally increasing fitness. Instead of building high-performance strings by
trying every conceivable combination, better solutions are created from the best partial solu-
tions identified over previous generations. We posit that the current patch representation
for program repair does not lend itself to the recombination of such small building blocks,
because each edit indivisibly combines information across all three subspaces. Thus, par-
tial information about potentially high-fitness features of an individual (e.g., accurate fault
localization, a useful edit operator) cannot be propagated or composed between individuals.
We conceive of the schemata in this domain as a template of edit operations, where certain
operations and their order are necessary to represent key individual information. We instan-
tiate this conception in a new subpatch representation, and then propose new crossover and
mutation operators over it.

We first introduce an illustrative running example (Section 3.1). Then we present a
lower granularity representation and a mapping to it from the existing patch representa-
tion (Section 3.2). We introduce a new mutation operator (Section 3.3), three new crossover
operators: OP1SPACE, UNIF1SPACE, and OPALLS (Section 3.4.1), and then each of these
new operators with a memory mechanism (Section 3.4.2). Finally, we outline our approach
for computing genotypic distance (Section 3.5), for use in our distance analysis.

3.1 Illustrative Example

For the purposes of illustration, we use integer indices to denote numbered statements taken
from a pool of potential faulty locations and candidate fix code. Consider a bug that requires
two edits to be repaired: Insert(5, 3) Delete(2,). Consider two candidate patches that
contain all material necessary for this repair:

1. Insert(5, 6)Replace(2, 9)
2. Replace(4, 3)Delete(2,)Insert(8,7)

Note that the deletion in variant (2) is correct, and only needs to be combined with the
appropriate insertion. The current crossover operator can easily propagate it into subse-
quent generations. However, crossover cannot produce the Insert(5, 3), even though the
insertion in variant (1) is only one modification away, along the fix axis, and (2) contains
the correct fix code in its first replacement. Mutation is also of limited utility, as it cannot
modify the 6 to a 3 and must be relied upon to construct the correct insertion from scratch.

Empir Software Eng (2018) 23:2980–3006 2987

Overall, the only way to achieve the desired solution is by combining edits that compose
semantically to the desired solution, which is improbable, or relying on mutation to produce
the correct insertion from nothing.

3.2 Decoupled Representation

Our novel subpatch representation decouples the three subspaces, decreasing edit granular-
ity, as illustrated in the middle of Fig. 1. For simplicity, this representation can be reduced
to a single-dimensional array by concatenating the three subspace arrays (Fig. 1, bottom).
Note that we add a ghost Fix value to the Delete operator to maintain consistent subspace
lengths, i.e.,, operation Delete(1,) maps to the array “[d,1,1]”.

We maintain the original representation for GP steps outside of mutation and crossover,
primarily for ease of implementation, and to focus our study. The translation from the canon-
ical to this new representation is straightforward, as illustrated in Fig. 2. Decode from the
new representation back to the canonical representation is similarly straightforward in the
simple case. However, because the crossover operators applied to the new representation
can lead to information loss, decode can sometimes result in “broken” genes, as we discuss
subsequently.

3.3 Mutation Operator

GenProg’s canonical mutation operator can create large changes, because it always inserts a
completely new operation in the patch list that comprises an individual. These modifications
can thus be destructive and are thus difficult to compose. This is perhaps one reason that
patch-based program improvement often produces patches that reduce to a single edit. That
is, many nominally multi-edit patches produced by these techniques contain unnecessary
changes that may be removed in post-processing without affecting the patch’s bug fixing
behavior (Qi et al. 2015).

The subpatch representation allows for the direct mutation of particular subspaces. Our
newmutation operator, SubspaceMutation, either appends a new edit to the existing genome
(as before), or perturbs an existing edit (a low-level perturbation), as illustrated in Fig. 3.
With a proportional mutation rate of one, standard in our and previous repair experiments,
each individual in a population either receives a new edit, or receives an update to the
subspace of an existing edit. Because low-level perturbation does not increase patch size,
this operator sometimes maintains individual length rather than increasing it monotonically.
This choice is motivated by evidence suggesting human bug fixing patches are typically
short (Martinez and Monperrus 2015).

Fig. 2 Mapping an individual to the new representation. Subspaces are distinguished by color: Yellow is the
Operator subspace; Blue, the Fault subspace; Red, the Fix subspace. “i” denotes an Insert operation;
“r”, Replace; and “d”, Delete

2988 Empir Software Eng (2018) 23:2980–3006

Fig. 3 Example demonstrating the new mutation operator

3.4 Crossover

We propose new crossover operators to leverage and analyze the proposed subpatch repre-
sentation. OP1SPACE and UNIF1SPACE apply to a single subspace, while OPALLS applies
to the whole chromosome. These three operators, alone (Section 3.4.1) and also augmented
with a memory mechanism (Section 3.4.2), result in six total new operators.

3.4.1 Three New Crossovers

The crossover process can be divided in four main steps: encode, recombination, decode
and remove invalid genes. As the proposed crossover operators are differentiated in the
recombination step, see Algorithm 1.

Empir Software Eng (2018) 23:2980–3006 2989

The encode step translates the canonical to the new representation, as illustrated in Fig. 2;
decode translates back. The decoding is informed by the structure of the arrays describing
a variant, illustrated in Fig. 4.

One Point Crossover on a Single Subspace (OP1SPACE) OP1SPACE applies one-
point crossover to a single subspace (see Fig. 5 for a visual presentation). It explores
new solutions in a single neighborhood, while maintaining potentially important blocks of
information in the other subspaces. For example, an individual may be modifying the appro-
priate location, but with the wrong edit; this operator allows the location information to be
retained.

Given two parent variants, OP1SPACE chooses one of the three subspaces uniformly at
random, and then randomly selects a single cut point in the subspace to be used in both
parents, bounded by the minimum length of the chosen subspace (so as to result in a valid
point in both parents). Tails beyond this cut point are swapped, generating two offspring.
The portions of the individuals relative to the unselected subspaces are unchanged.

Uniform Single Subspace (UNIF1SPACE). A uniform crossover operator combines a
uniform blend of data from each parent (Rawlins 1991), promoting greater exploration. In
certain domains, a uniform operator can be problematically destructive (Le Goues et al.
2012). We thus propose a uniform operator along a single subspace, promoting a constrained
exploration.

Given two parent variants, UNIF1SPACE chooses one subspace uniformly at random.
The larger of the two subspaces is truncated to the length of the shorter. The operator then
generates a binary mask of the length of the shorter subspace. This mask is used to choose
the source of value in every position in the chosen subspace; one offspring will be the
complement of the other, based on the mask. Figure 6 shows an example, choosing the
Operator subspace.

One Point Across All Subspaces (OPALLS). OPALLS follows the same rules for
crossover point selection as OP1SPACE, applied to the entire individual, mixing subspaces.
Given two parent variants, OPALLS selects one of the subspaces uniformly at random,

Fig. 4 Example of the decode process

2990 Empir Software Eng (2018) 23:2980–3006

Fig. 5 Example of OP1SPACE applied to a pair of variants

and then a single random cut point in that subspace. OPALLS then does not differentiate
between subspaces, instead swapping everything after the cut point to produce offspring.
The selected crossover point is bounded by the minimum length of the chosen subspace to
avoid mixing the values of different subspaces.

This operator can maintain larger basic blocks than UNIF1SPACE, with a greater capacity
for information exchange than OP1SPACE. Large blocks containing valuable information

Fig. 6 Example of UNIF1SPACE applied in the Operator subspace. Note that this operator can create
highly diverse offspring, but may also dissolve basic blocks

Empir Software Eng (2018) 23:2980–3006 2991

within at least one subspace are not dissolved, maintaining certain good information, while
completely modifying other edits. For example, this crossover could keep all the original
values for Operator, while still changing all the Fix values and some of the Fault
values, as illustrated in Fig. 7.

Information Loss Unlike the canonical crossover, our new crossover operators can result
in incomplete edit operations in offspring when parents are of different lengths. This can
result in either excess or missing data in unchanged subspaces (e.g., an insertion without a
corresponding fix statement; Fig. 5 provides an example). Without the memory cache, when
converting individuals back to the canonical representation, the decode step simply drops
invalid genes. This reduces the size of the offspring variants.

3.4.2 Genetic Memory

To mitigate the risk of data loss, we previously proposed a pool-based memory scheme to
help reconstruct valid from invalid genes (Oliveira et al. 2016). This approach maintains a
pool, or cache, of unused genes that were dropped from any offspring throughout a given
search (distinguishing dropped genes by subspace). This pool is used to fix any broken genes
produced by destructive crossover. Such individuals are fixed by selecting elements from
the pool at random to replace missing pieces of genes. This process occurs after decode,
but before invalid genes are removed. For example, in Fig. 5, the operation “i” in the first
offspring, and the fault and fix values (5 and 6) in the second would be stored in the pool
for use in subsequent generations. The memory mechanism also checks the cache for fault
and fix values to repair the first offspring, and an operator to repair the second, choosing
between multiple available options at random. This fix procedure is performed whenever
possible, whenever genes are broken by crossover.

However, we found that pool-based memory did not improve search efficiency. We
speculate that this occurred because the pool-based cache does not preserve relationships
between broken individuals and candidate repair genes, and thus individuals can receive

Fig. 7 Example of OPALLS

2992 Empir Software Eng (2018) 23:2980–3006

from the pool unrelated genetic material. This adds noise to the evolutionary process without
a commensurate benefit.

We therefore propose here a per-individual memory scheme that preserves links between
candidate genes and individuals. This approach maintains per-individual caches to store
material dropped during crossover over the course of evolution of variant lineages. The
scheme otherwise works as before.

3.5 Distance Metric

As discussed in Section 2.1, distance analysis can help clarify and inform improvements
to a given search problem (Kim and Moon 2004). Although phenotypic distance is more
commonly appropriate (Morrison and De Jong 2001), in this work, we analyze genotypic
distance. We do this because phenotypic distance is typically measured by the fitness func-
tion. Current genetic improvement search strategies, including GenProg, use test suites for
this purpose, which present a highly step-wise function with extensive plateaus (Forrest et al.
2009; Fast et al. 2010). It is therefore minimally informative for the purposes of distance
analysis.

We measure distance between individuals using Levenshtein Distance on the individual
patches encoded as described above; Levensthein distance generalizes Hamming distance to
operate on strings of different lengths (Rothlauf 2011). Summarizing, the distance between
the strings A and B is the number of alterations to A necessary to convert it to B. Figure 8
shows an example of distance computation between two individuals of different lengths (s
denotes “swap”; i, “insert”; and d, “delete”). We simplify the calculation with a heuristic
that pads subspaces with empty spaces, so as to avoid inadvertently comparing values of
different subspaces. Equivalent characters between individuals receive a count of 0; differ-
ent characters, 1 (corresponding to the number of edits required to change one value into
another). The distance between two individuals is the sum of these counts. We use this
measurement in our analysis in Section 4.5.

4 Experiments

This section presents experiments evaluating our new crossover operators, with and without
per-individual genetic memory, and the new mutation operator. We also use distance analy-
sis to surface relevant characteristics of the different operators with respect to the underlying
search.

Fig. 8 Example of Levenshtein distance applied to patches

Empir Software Eng (2018) 23:2980–3006 2993

Table 1 Benchmarks; Tests used
as input to each repair algorithm
(“Repair”) and held out, for
evaluation of produced patch
generalizability (“Held-out”),
where available; and buggy
versions of each program

Program Versions Tests

gcd 1 11

zune 1 24

libtiff 24 1392

Repair Held-Out

checksum 8 6 10

digits 18 6 10

grade 16 7 9

median 14 7 6

smallest 14 7 8

syllables 14 6 10

4.1 Setup

Benchmarks Table 1 shows the C programs we use in our evaluation. gcd and zune
have classically appeared in previous assessments of program repair.2 Both include infinite
loop bugs. The other six program classes are drawn from IntroClass (Le Goues et al. 2015),
a set of student-written versions of small C programming assignments in an introductory C
programming course. IntroClass contains many incorrect student programs corresponding
to each problem. Because our experiments are computationally intensive, we randomly sub-
sample 30% of the buggy programs for each assignment. We also include defects from the
libtiff problem, from the ManyBugs benchmark (Le Goues et al. 2015), which presents
bugs in a real-world library consisting of many files and thousand of lines of code.3

We use results on the libtiff program bugs to validate our claims about scalability
and generality to real-world programs. Other than this, we focus on small programs. How-
ever, this is important for our evaluation. First, it allows us to run many random trials for
more iterations than is typical in program repair evaluations, with acceptable computational
cost. Second, our small programs are fully covered/specified by their black box tests, which
allows for a separation of concerns with respect to fitness function quality and completeness.
That is, the tests provided with real world programs can be weak proxies for correctness (Qi
et al. 2015), increasing the risk of low-quality patches. We sidestep this issue by evaluating
in part on well-specified programs (Smith et al. 2015).

Additionally, the IntroClass programs are associated with two full coverage, test suites
that independently exercise functionality. We use the black box tests provided with the
benchmark to direct the search. For these programs, we use the second, generated test suite
to independently evaluate the degree to which any produced patch generalizes. Note that
our primary goal is not to perfectly characterize or measure bug fixing patch quality, an
unsolved research problem, but rather to improve the traversal of the program improvement
fitness landscape. However, patch quality is a core concern in program repair and its eval-
uation in a research context, and thus we use these held-out test suites where available to
augment our evaluation.

For all observed effects described below, we use Wilcoxon rank-sum tests to assess
whether performance distribution between the proposed operators and the original ones are

2Both available from the GenProg project, http://genprog.cs.virginia.edu/
3IntroClass and ManyBugs are available at http://repairbenchmarks.cs.umass.edu/

http://genprog.cs.virginia.edu/
http://repairbenchmarks.cs.umass.edu/

2994 Empir Software Eng (2018) 23:2980–3006

statistically significant (α = 0.05). The samples for the statistical test are the amount of
fixes found in each version of the executed problems.

Parameters and Metrics We executed 30 random trials for each program version,
totalling 2820 runs (consistent with recommendations for evaluations of stochastic algo-
rithms (Arcuri and Briand 2011)). The search concludes either when it reaches the
generational limit or when it finds a patch that causes the program to pass all provided test
cases. As all analyzed algorithms evaluate the same number of individuals per generation,
the generation stop criterion supports a controlled comparison.

For simplicity, we omit the post processing patch minimization step based on delta
debugging (Zeller 1999). Prior work suggests that this step does not have a statistically
significant impact on patch quality (Smith et al. 2015). Our primary concern is effec-
tively traversing the search landscape, to which these post processing measures have no
relationship, and thus we omit them for a more focused study.

Our parameters for gcd, zune and IntroClass problems are: Elitism = 3, Generations =
30, Population size = 30, Crossover rate = 0.5, Mutation rate = 1, Tournament k = 2. The
new mutation operator selects between appending a new edit and performing a low-level
perturbation with 50-50 probability. Because the libtiff problems are larger and take
longer to run, we set Generations = 10 and Population size = 40, to render the experiments
viable with our compute resources. The evaluation metrics are the success rate and the
number of test suite evaluations to repair, a machine- and test suite- independent measure
of time.

4.2 Crossover Operator Results

Success Rate Table 2 presents the success rate of experiments for all operators and prob-
lems (higher is better). No repairs were found for programs in the grade dataset. Prior
results show that search-based program repair techniques have a low success rate on grade
problems. For example, GenProg repairs 2 out of 226 buggy programs (Le Goues et al.
2015). As we consider a random subset of the grade problems, it is consistent with these
prior results that GenProg might not find any patches, regardless of operator. This is espe-
cially true given that the benefits operators provide to success rate and convergence time
(discussed subsequently) are modest (and inconsistent with a fundamental change in suc-
cess rate overall). For the other problems, Table 2 shows that UNIF1SPACE with memory
presents the best success rate, increasing the success rate on average by 50.9% over the
others.

At a per-problem level, for the checksum problem, OP1SPACE with genetic mem-
ory was best. On digits programs, as well as zune, almost all operators are roughly
equivalent to the original. In the gcd problem, all operators produced a high fix rate, but
UNIF1SPACE operators were best. For the median problem, the operators that manipu-
late single subspaces were best (UNIF1SPACE and OP1SPACE), especially without genetic
memory. Furthermore, all proposed operators were much better than the original, e.g.
UNIF1SPACE without memory was 814.2% better. For syllables problems, all proposed
operators demonstrated a low fix rate, but outperformed the original. For smallest pro-
grams, UNIF1SPACE and OP1SPACE were better than OPALLS, and much better than the
original operator, e.g. UNIF1SPACE with genetic memory outperformed the original oper-
ator by 271.18%. Finally, for libtiff, UNIF1SPACE with memory performed the best.
With the exception of OP1SPACE without memory and OPALLS with memory, all proposed
operators outperformed the original crossover.

Empir Software Eng (2018) 23:2980–3006 2995

Table 2 Success rate (percentage) over all runs

Original OP1SPACE UNIF1SPACE OPALLS

Memory? N/A No Yes No Yes No Yes

gcd 70.00 80.00 90.00 90.00 90.00 86.67 80.00

zune 96.67 100.00 100.00 83.33 96.67 100.00 86.67

checksum 12.50 17.50 19.50 17.08 16.25 17.50 19.17

digits 5.37 5.56 5.19 5.56 5.56 5.56 5.56

grade 0.00 0.00 0.00 0.00 0.00 0.00 0.00

median 5.00 44.76 43.33 45.71 41.43 35.71 32.14

smallest 19.05 69.05 65.24 70.24 70.71 49.76 49.29

syllables 0.71 6.67 5.24 5.95 6.90 6.90 6.19

libtiff 40 37.92 41.67 42.08 48.75 42.5 44.0

Average 27.7 40.16 41.13 40 41.8 38.28 35.89

Total 11.29 27.25 26.67 27.67 27.76 22.9 21.30

Significance − ∗ ∗ ∗ ∗ ∗ ∗

We aggregate across IntroClass and libtiff problems for presentation. Bold text identifies the best results
for a problem class. The “∗” denotes results that are statistically significant (p-value ≤ 0.05) with respect to
the original operator

Efficiency Table 3 presents test suite evaluations, or average fitness evaluations, to repair
(lower is better). We omit grade, as no repairs were found in any run. Overall, the operator
with the best success rate was not the most efficient. This is consistent with our expectations
because more difficult problems are harder to solve, and thus succeeding at them can pull up
the average time to repair (Le Goues et al. 2012). Furthermore, increasing the representation
granularity commensurately increases the size of the search space. Thus, as expected, the

Table 3 Number of test suite evaluations to find a repair

Original OP1SPACE UNIF1SPACE OPALLS

Memory? N/A No Yes No Yes No Yes

gcd 21.71 45.69 31.29 29.52 29.52 45.51 32.27

zune 5.76 4.04 3.36 4.50 4.04 3.77 4.60

checksum 0.65 20.55 25.58 23.57 21.58 25.97 26.13

digits 1.54 1.12 1.02 1.59 1.30 3.73 4.33

median 37.35 88.58 90.04 87.85 84.02 83.97 78.5

smallest 8.39 27.5 26.6 28.08 24.57 22.26 23.75

syllables 2.6 62.8 55.97 40.75 49.15 68.39 53.00

libtiff 50.7 61.9 60.8 58.3 72.13 61.21 61.17

Average 16.08 39.02 36.83 34.27 35.78 39.35 35.47

Significance − ∗ ∗ ∗ ∗ ∗ ∗

We omit grade (from Introclass) because no repairs were found. Bold text identifies the best results for a
problem class. “∗” denotes results that are statistically significantly (p-value ≤ 0.05) different as compared
to the performance of the original operator

2996 Empir Software Eng (2018) 23:2980–3006

search itself requires more iterations to find solutions. Additionally, although the nature
of the representation (as tree-based edits over the AST) prevents the construction of any
syntactically invalid candidate patches, decoupling the subspaces may result in semantically
invalid patches (i.e., by associating fix code to a new candidate fault location, variables
may be moved out of scope). The default representation precludes this possibility by using
a scope check when selecting fix code to use in a location. Fitness evaluation (on these
benchmarks, and generally (Le Goues et al. 2012)) is dominated by test case execution
(rather than compilation) time, and so this injection of noise in the search space likely has
only modest effects. It is possible to inject a scope check into the decode phase (filtering out
invalid edits); we leave this improvement to future work. However, overall, the performance
differences are not large, and it may be reasonable to exchange a slight loss of efficiency
in favor of a more effective search strategy. On the other hand, memory decreases time to
repair for most of programs, especially for OP1SPACE and UNIF1SPACE.

At a per-problem level, the original crossover operator outperformed the others for
checksum, but as the success rate is low, high variability is unsurprising. The second
best operator here is UNIF1SPACE without memory. For digits, the OP1SPACE with mem-
ory was best, followed by OP1SPACE without. In gcd the original outperformed the other
operators, but the UNIF1SPACE was the best of the new operators. zune presents a low dis-
crepancy within operators, with all search efforts converging rapidly, but OP1SPACE with
memory was the most efficient. On smallest, median, syllables and libtiff,
original performed the best.

Memory The new memory scheme increases success rate on average for OP1SPACE
and UNIF1SPACE, suggesting that the mechanism is effective for operators that exchange
genetic material between single subspaces. Although crossover operators without mem-
ory constrain patch size throughout the search, these results suggest that this benefit is
outweighed by the ability to leverage genetic memory.

Subpatch Representation On average, all crossovers using subpatch representation out-
performed the standard representation, even when genetic material is lost in decode. This
significant improvement of all proposed operators suggests that the low-granularity repre-
sentation is the main reason for the result. In terms of scalability, the subpatch representation
does not use considerably more memory, and the computational cost of transformation is
low. Thus, our results suggest that the proposed representation improves GenProg’s abil-
ity to better exploit the search space, and is promising for other program improvement
techniques predicated on patch-based genetic search.

4.3 Mutation Operator Results

Table 4 compares fix rates between canonical GenProg, GenProg with Subspace Mutation,
and GenProg with the crossover operator representing the best fix rate for each problem.
The new mutation operator is comparable to the original on gcd, zune, checksum and
digits, but is much better on median (362%), smallest (74.96%) and syllables
(504.22%), the problems for which we have the greatest amount of data. This suggests that
the problem type may influence search performance.

Overall, the new crossover operators are more important to improved success rate than
the new Subspace Mutation operator, though it does improve performance over canonical
GenProg. This is consistent with the natural role of mutation, which can not on its own solve
all elements of a complex search problem (as it cannot combine partial solutions). However,

Empir Software Eng (2018) 23:2980–3006 2997

Table 4 Success rate
(percentage) over all runs,
comparing mutation operators
with the best-performing
crossover Operator
(UNIF1SPACE with memory)

Subspace UnifSingle

Program Original Mutation Memory

gcd 70.00 70.00 90.00

zune 96.67 100.00 100.00

checksum 12.50 10.83 16.25

digits 5.37 4.26 5.56

grade 0.00 0.00 0.00

median 5.00 23.10 45.71

smallest 19.05 33.33 70.71

syllables 0.71 4.29 6.90

Average 26.16 30.73 41.07

Total 8.26 13.76 24.61

Significance − ∗ ∗

“∗” denotes results that are
statistically significantly
different (p-value ≤ 0.05) as
compared to the results for the
original mutation operator

this result supports the utility of Subspace Mutation over a subpatch representation, as it
improves exploration over the original even with the original crossover.

4.4 Patch Quality

Performance on Held-Out Test Suites Our research goal is to understand, char-
acterize, and more efficiently traverse the search landscape of patch-based program
repair/improvement; generated patch quality is thus a largely orthogonal concern. Generated
patch quality is an important concern in automated program repair research (Smith et al.
2015; Qi et al. 2015). It is thus important to ascertain the effect, if any, the newly proposed
representation and operators have with respect to this concern. The IntroClass problems are
released with two high-quality test suites, to assist in evaluations of exactly this type (Le
Goues et al. 2015): patches may be generated with respect to one test suite, and then vali-
dated against a second, held-out, high-coverage test suite. Table 5 shows results in terms of
the proportion of produced patches that generalize fully to the held-out test suites. Results
indicate that the majority of produced patches pass all held-out tests. The patches produced
for digits and syllables all do so, regardless of operator. The variation between the
operators otherwise is not statistically significant.

Table 5 Proportion of generated patches that generalize to all held-out test cases.

Original OP1SPACE UNIF1SPACE OPALLS Submutation

Memory? N/A No Yes No Yes No Yes N/A

checksum 100.0 97.6 100.0 100.0 100.0 100.0 100.0 100.0

digits 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

median 91.8 90.3 93.4 94.7 95.1 92.2 94.4 97.9

smallest 98.5 94.2 99.5 98.6 97.1 99.5 97.3 97.9

syllables 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Average 98.1 96.4 98.7 98.7 98.4 98.4 98.4 99.2

2998 Empir Software Eng (2018) 23:2980–3006

Example Patch For illustration, consider the following patched portion of a buggy
checksum program, produced using UNIF1SPACE with memory (the operator with the
best performance):

The checksum program takes a single-line string as input. It should compute and output
the sum of the integer codes of the characters in the string, modulo 64, plus the code for the
space character. The original program incorrectly includes the newline in the sum, and adds
the wrong ASCII value for space on line 7 (the ASCII code for space is 32, not 22).

The patch first causes the while loop to correctly break after reading next but before
adding its result to sum. The insertion on line 8 adds the value of next to sum. nextmust
be newline (“\n”) on line 7. The ASCII value for newline is 10 which, when taken with
the sum on the preceding line, correctly adds 32 to sum modulo 64. A human programmer
is, of course, unlikely to produce this patch (a more natural approach would be to change
the 22 to 32 directly). However, the operators at GenProg’s disposal do not allow for the
modification of constants in binary expressions, and instead must work around the problem
at a statement-level granularity. This multi-edit patch still achieves the desired functional
result.

4.5 Distance Analysis

Convergence Crossover is one of the primary factors in convergence, a desirable GP trait
that indicates the maintenance of exploitable information between generations (and distin-
guishes a GP from a random walk). Offspring that are closer to one another than parents are
to one another indicate desirable convergence behavior (Louis and Rawlins 1992; Rothlauf
2011).

Table 6 presents the results of calculating the average distance between parents, off-
spring, and parent and offspring individuals using each crossover operator, averaged over all
generations and all runs. For the original operator, distance between offspring (Offspring1-
Offspring2) decreases less as compared to distance between parents than it does with the
other operators, at least in part because the selection of crossover point (which can be
different for each parent) can highly influence the resulting offspring.

The newly proposed operators’ distance between offspring significantly decreases com-
pared to the distance between parents, indicating that the crossover approaches improve
the convergence. Note that the new operators can never result in offspring distance greater
than parent distance, because the offspring length is always bounded by parent sizes.
Consider the subspace operators (OP1SPACE and UNIF1SPACE): Changes in one sub-
space cannot increase the length of the others, even if a chosen subspace is entirely
modified.

Indeed, the effect of the proposed crossovers is more influenced by the parent length
difference than the cut point (or mask, for UNIF1SPACE).

Empir Software Eng (2018) 23:2980–3006 2999

Table 6 Levenshtein distance between parents and offspring; numbers represent averages across the multiple
experimental runs

Original OP1SPACE UNIF1SPACE OPALLS

Memory? N/A No Yes No Yes No Yes

Parent1-Parent2 8.26 15.37 15.35 13.12 21.13 14.63 20.56

Offspring1-Offspring2 7.87 11.46 11.44 6.42 17.40 9.41 17.40

Parent1-Offspring1 3.30 4.84 4.84 4.84 8.69 9.32 14.25

Parent1-Offspring2 6.27 11.79 11.76 8.26 15.89 5.32 8.69

Parent2-Offspring1 6.27 11.78 11.75 8.28 15.90 5.30 8.68

Parent2-Offspring2 3.30 4.84 4.82 4.85 8.7 9.32 14.25

Average 8.25 10.01 10 7.63 14.62 8.88 14.07

When the biggest distance between an offspring and a parent is smaller than the distance
between the parents it also indicates that this crossover provide convergence. The Table 6
shows that all crossover operator provide convergence (Rothlauf 2011).

Figure 9 presents an example illustrating the point: operators that decrease or, at the very
least, maintain offspring length as compared to parent variants, are more likely to decrease
offspring distance over time, promoting convergence.

Diversity Although convergence is desirable, population diversity is still necessary to sup-
port exploration (Gupta and Ghafir 2012). We therefore evaluate the amount of genetic
material each offspring inherits from each parent. Ideally, each offspring is equally distant
from both parents (Mattfeld 2013).

Table 6 shows that offspring are typically closer to one of the two parent variants (Parent-
Offspring), because offspring will always be closer to the longer parent. Although these
results show less diversity than desirable, we also observe that the average parent-offspring
distance is considerable. The distance between offspring and their more distant parent is
almost equal to the distance between offspring within a given iteration. This demonstrates
that the crossover operators still promote diversity. At an Operator-specific level, note that
UNIF1SPACE and OP1SPACE always provide some recombination, while OPALLS can
decrease diversity when the cut point is either at the beginning or end of a parent variant
(resulting in identical offspring).

The average distance presented on Table 6 can be a convergence indicator, because as
closer the population are, less diversity the crossover is providing. Thus, the UNIF1SPACE
with memorization presented the highest average distance, except the UNIF1SPACE without

Fig. 9 Example of a crossover using OP1SPACE without memory, with cross point = 1 on the Fault subspace,
with parent/offspring distances

3000 Empir Software Eng (2018) 23:2980–3006

memorization, all approaches presented higher average distance, mainly the versions with
memorization. Thus, the new approach indicates that improve the diversity of the popu-
lation. It is expected because the increase of the capacity of recombination of the new
representation allow the capacity of create new individuals.

Crossover operators that affect only one subspace at a time produce offspring closer to
their parents on average (as expected); those that modify over all subspaces are more dis-
ruptive, and consequently increase the population distance. That said, UNIF1SPACE with
memory presents average distances comparable to OPALLS with memory, despite hav-
ing a better fix rate. UNIF1SPACE, with the diversity provided by memory, results in long
variants; in OPALLS, the higher distances come from a high mix of genetic material.

We conclude that these operators cannot (and do not) produce perfect diversity and con-
vergence, as the balance between exploration and exploitation is defined by the mix of all
operators and parameters (including, e.g., mutation rate and variety) rather than the single
crossover component. However, we have characterized the way they contribute to diversity
and search space exploitation, providing insight as to how they do so more effectively than
the original operator.

4.6 Threats to Validity

One threat to the validity of our results is that our dataset may not be indicative of real-world
program improvement tasks. We selected our programs because they allowed us to minimize
other types of noise, such as test suite quality, allowing for a more focused study of operator
effectiveness and sufficient data to make stronger statistical claims. We thus view this as
a necessary tradeoff. Another important concern in program improvement work is output
quality, as test-case-driven program improvement can overfit to the objective function or
be misled by weak tests. We mitigate this risk by using high-coverage, high-quality test
suites (Smith et al. 2015). Nevertheless, we evaluate the patch quality based on held-out
test cases. Note that output quality is not our core concern, and the new representation
and operators are parametric with respect to fitness functions and mutation operators, and
thus should generalize immediately to other patch-based program improvement techniques
that produce program improvements. Additionally, although genotypic distance illuminates
characteristics of each crossover operator, it may not be sufficient to characterize all the
ways the operators impact the search. A deeper analysis using phenotypic distance could
highlight additional characteristics of the search, corroborating and extending these results,
but would require innovations in the fitness function for program improvement before it can
be truly informative.

5 Related Work

Most innovations in the Genetic Programming (GP) space for program improvement involve
new kinds of fitness functions or application domains, with less emphasis on novel repre-
sentations and operators, such as those we explore. However, there are exceptions to this
general trend. Orlov and Sipper (2011) propose a semantics-preserving crossover operator
for Java bytecode. Ackling et al. (2011) propose a patch-based representation to encode
Python rewrite rules; Debroy and Wong (2010) investigate alternative mutation operators.
Forrest et al. (2009) quantified operator effectiveness, and compared crossback to tradi-
tional crossover. Le Goues et al. (2012) examined several representation, operator and
other choices used for evolutionary program repair, quantified the superiority of the patch

Empir Software Eng (2018) 23:2980–3006 3001

representation over the previously-common AST alternative, and demonstrated the impor-
tance of crossover to success rate in this domain. Although they do examine the role of
crossover, they do not attempt to decompose the representation to improve evolvability,
as we do, rather focusing on the effects of representation and parameter weighting. These
results, along with our own, corroborate (Arcuri 2011), which demonstrates that param-
eter and operator choices have tremendous impact on search-based algorithms generally.
Our research contributes to this area, presenting a new way to represent and recombine
parents evaluating the influence of evolutionary operators on algorithmic performance, and
characterizing that performance in terms of population diversity and information.

Our results demonstrate that in theory our proposed representation and novel operators
can improve the creation and propagation of genetic building blocks, but we do not directly
investigate the role of schema evolution in this phenomenon; we leave this to future work.
For example, Burlacu et al. (2015) presents a powerful tool for theoretical investigations on
evolutionary algorithm behavior concerning building blocks and fitness.

Informed by the building blocks hypothesis, Harik et al. (1999) proposed a compact
genetic algorithm, representing the population as a probability distribution over a solution
set, which is operationally equivalent to the order-one behavior of a simple GAwith uniform
crossover. They conclude that building blocks can be tightly coded and propagated through-
out the population through repeated selection and recombination. This theory suggests that
knowledge about the problem domain can be inserted into the chromosomal features, and
GA can use this partial knowledge to link and build information blocks. The difficulty of
representing a program in repair problem may be one of the reasons for its complexity.

Distance correlation has been used to characterize population diversity across vari-
ous search landscapes (Morrison and De Jong 2001). Kim and Moon (2004) proposed
more effective distance measures based on GA context, and show that they can be used
as informative metrics. Mattfeld (2013) use distance to analyze crossover uniformity and
information preservation. These results suggest several additional phenotypical distance
measures we could leverage in this type of work, possibly informing future research on
operators and parameters to improve search quality.

Mutation operators are the subject of considerable debate in the field of search-base soft-
ware engineering. It has been claimed both that mutation may not be necessary (Koza 1994)
and that mutation alone is sufficient for many problems, as in Evolutionary Programming.
On balance, previous work indicates that mutation is important, but insufficient on its own
to address complex search spaces (Rothlauf 2011). We propose one new approach from a
broad array of possibilities; on balance, there is clearly significant room to explore muta-
tion in GP for program repair. This is further corroborated by other work more strictly in
the space of program repair research, much of which conceptually proposes new template-
based mutation operators, informed by, e.g., previous human repairs (Kim et al. 2013; Long
and Rinard 2015).

The relative performance of crossover and mutation depends on both the problem and the
details of the genetic programming system (Luke and Spector 1997), and although analyzing
operators independently is key, it is equally important to analyze their effects on one another.
This motivates future study to better understand the benefits and interactive effects of our
subpatch representation and operators in the area of search based software repair and genetic
improvement more generally.

There exists a considerable body of work in program repair and program improvement,
which explicitly use both search-based software engineering strategies (e.g., Kim et al.
(2013), Le et al. (2016), Petke et al. (2014), Barr et al. (2015), Weimer et al. (2013), and
Debroy and Wong (2010)) as well as many others (e.g., Long and Rinard (2016), Long

3002 Empir Software Eng (2018) 23:2980–3006

and Rinard (2015), Nguyen et al. (2013), Mechtaev et al. (2016), Martinez and Monperrus
(2015), and Ke et al. (2015)). We do not propose fundamentally new repair algorithms in this
work, and instead focus on the operators that underlie a particular type of search strategy for
program repair or other improvements. We anticipate that these advances will be particularly
beneficial in GP-based program repair and GI strategies (Silva and Esparcia-Alcázar 2015).

6 Conclusion

We have proposed a new subpatch representation and associated operators to enable bet-
ter exploration and recombination for search-based program improvement. We further
presented a novel individual memory process that effectively repairs broken individuals pro-
duced by possibly-destructive operators. Our results are promising: Our best new crossover
operator, UNIF1SPACE with memory, demonstrated an increase of 245% in successful rate
over the baseline. Several other proposed operators demonstrated positive results as well.
e.g., OP1SPACE without memory outperformed the original crossover in terms of success
rate by 141%. Our results on the new Subspace Mutation operator further substantiated its
potential, supporting the utility of a low-level perturbation strategy for program improve-
ment. Finally, we used a genotypical distance analysis to characterize elements of various
operators that contributed to relevant and desirable properties of the search landscape.

These results overall suggest that it may be possible to achieve both the scalability
benefits of the patch representation for program improvement as well as more effective
recombination over the evolutionary computation. Finally, as is consistent with other work,
we see that selected evolutionary operators and parameters can have a tremendous impact on
search results, motivating future work on such novel evolutionary operators and associated
parameters for this and other software engineering search problems.

Acknowledgements Acknowledgements to be added to support a camera-ready.

References

Ackling T, Alexander B, Grunert I (2011) Evolving patches for software repair. In: Genetic and Evolutionary
Computation, pp 1427–1434

Arcuri A (2011) Evolutionary repair of faulty software. Appl Soft Comput 11(4):3494–3514
Arcuri A, Briand L (2011) A practical guide for using statistical tests to assess randomized algorithms in

software engineering. In: International Conference on Software Engineering, ACM, New York, NY,
USA, ICSE ’11, pp 1–10

Arcuri A, Yao X (2008) A novel co-evolutionary approach to automatic software bug fixing. In: 2008
IEEE Congress on Evolutionary Computation. CEC 2008. (IEEE World Congress on Computational
Intelligence), IEEE, pp 162-168

Barr ET, Brun Y, Devanbu P, Harman M, Sarro F (2014) The plastic surgery hypothesis. In: Proceedings of
the 22nd ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE), pp 306–317

Barr ET, Harman M, Jia Y, Marginean A, Petke J (2015) Automated software transplantation. In:
International Symposium on Software Testing and Analysis (ISSTA), pp 257–269

Brameier MF, Banzhaf W (2007) Linear genetic programming, 1st edn. Springer, Berlin
Britton T, Jeng L, Carver G, Cheak P, Katzenellenbogen T (2013) Reversible debugging software. Tech rep.,

University of Cambridge, Judge Business School
Bruce BR, Petke J, Harman M (2015) Reducing energy consumption using genetic improvement. In: Annual

Conference on Genetic and Evolutionary Computation (GECCO), pp 1327–1334
Burlacu B, Affenzeller M,Winkler S, KommendaM, Kronberger G (2015) Methods for genealogy and build-

ing block analysis in genetic programming. In: Computational Intelligence and Efficiency in Engineering
Systems. Springer, pp 61–74

Empir Software Eng (2018) 23:2980–3006 3003

Debroy V, Wong WE (2010) Using mutation to automatically suggest fixes for faulty programs. In:
International Conference on Software Testing, Verification, and Validation, pp 65–74

DeJong K (1975) An analysis of the behavior of a class of genetic adaptive systems. Ph D Thesis, University
of Michigan

Fast E, Le Goues C, Forrest S, Weimer W (2010) Designing better fitness functions for automated program
repair. In: Pelikan M, Branke J (eds) Genetic and Evolutionary Computation Conference (GECCO).
ACM, pp 965–972

Forrest S (1993) Genetic algorithms: principles of natural selection applied to computation. Science 261:872–878
Forrest S, Nguyen T,WeimerW, Le Goues C (2009) A genetic programming approach to automated software

repair. In: Genetic and evolutionary computation conference (GECCO), pp 947–954
Freitas E, Camilo CG Jr, Vincenzi AMR (2016) SCOUT: a multi-objective method to select components

in designing unit testing. In: IEEE 27th International Symposium on Software Reliability Engineering
(ISSRE), pp 36–46

Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning, 1st edn. Addison-
Wesley Longman Publishing Co., Inc, Reading

Gupta D, Ghafir S (2012) An overview of methods maintaining diversity in genetic algorithms. Int J Emerg
Technol Adv Eng 2(5):56–60

Harik GR, Lobo FG, Goldberg DE (1999) The compact genetic algorithm. IEEE Trans Evol Comput
3(4):287–297

Harman M, Mansouri SA, Zhang Y (2012) Search-based software engineering: trends, techniques and
applications. ACM Comput Surv 45(1):11:1–11:61. https://doi.org/10.1145/2379776.2379787

Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to
biology, control and artificial intelligence. MIT Press, Cambridge

Jones JA, Harrold MJ, Stasko J (2002) Visualization of test information to assist fault localization.
In: International conference on software engineering (ICSE), Orlando, FL, USA, pp 467–477.
https://doi.org/10.1145/581339.581397

Ke Y, Stolee KT, Le Goues C, Brun Y (2015) Repairing programs with semantic code search. In: 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pp 295–306

Kim D, Nam J, Song J, Kim S (2013) Automatic patch generation learned from human-written patches.
In: ACM/IEEE International Conference on Software Engineering (ICSE), San Francisco, CA, USA,
pp 802–811

Kim YH, Moon BR (2004) Distance measures in genetic algorithms. In: Genetic and evolutionary
computation conference (GECCO). Springer, pp 400–401

Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT
Press, Cambridge

Koza JR (1994) Genetic programming II: automatic discovery of reusable programs. MIT Press, Cambridge
Langdon WB, Harman M (2015) Grow and graft a better CUDA pknotsRG for RNA pseudoknot free energy

calculation. In: Genetic andEvolutionaryComputationConference,GECCOCompanion ’15, pp 805–810
Le XBD, Lo D, Le Goues C (2016) History driven program repair. In: IEEE 23Rd International Conference

on Software Analysis, Evolution, and Reengineering (SANER), vol 1. IEEE, pp 213–224
Le Goues C, Dewey-Vogt M, Forrest S, Weimer W (2012a) A systematic study of automated program repair:

Fixing 55 out of 105 bugs for $8 each. In: International Conference on Software Engineering (ICSE),
pp 3–13

Le Goues C, Nguyen T, Forrest S, Weimer W (2012b) Genprog: a generic method for automatic software
repair. IEEE Transactions on Software Engineering (TSE) 38:54–72. https://doi.org/10.1109/TSE.2011.
104

Le Goues C, Weimer W, Forrest S (2012) Representations and operators for improving evolutionary software
repair. In: Genetic and evolutionary computation conference (GECCO), pp 959–966

Le Goues C, Forrest S, Weimer W (2013) Current challenges in automatic software repair. Softw Qual J
21(3):421–443. https://doi.org/10.1007/s11219-013-9208-0

Le Goues C, Holtschulte N, Smith EK, Brun Y, Devanbu P, Forrest S, Weimer W (2015) The ManyBugs and
IntroClass benchmarks for automated repair of C programs. IEEE Transactions on Software Engineering
(TSE)

Liblit B, Naik M, Zheng AX, Aiken A, Jordan MI (2005) Scalable statistical bug isolation. SIGPLAN Not
40(6):15–26. https://doi.org/10.1145/1064978.1065014

Long F, Rinard M (2015) Staged program repair with condition synthesis. In: Joint Meeting of the European
Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), ACM, New York, NY, USA, ESEC/FSE 2015, pp 166–178

Long F, Rinard M (2016) Automatic patch generation by learning correct code. In: Principles of Program-
ming Languages, POPL ’16, pp 298–312

https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1145/581339.581397
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1007/s11219-013-9208-0
https://doi.org/10.1145/1064978.1065014

3004 Empir Software Eng (2018) 23:2980–3006

Louis SJ, Rawlins GJE (1992) Syntactic analysis of convergence in genetic algorithms. In: Foundations of
Genetic Algorithms 2, Morgan Kaufmann, pp 141–151

Luke S, Spector L (1997) A comparison of crossover and mutation in genetic programming. Genet Program
97:240–248

Machado BN, Camilo CG Jr, Rodrigues CL, Quijano EHD (2016) Sbstframe: a framework to search-based
software testing. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
pp 004,106–004,111

Martinez M, Monperrus M (2015) Mining software repair models for reasoning on the search space of
automated program fixing. Empir Softw Eng 20(1):176–205

Mattfeld DC (2013) Evolutionary search and the job shop: Investigations on genetic algorithms for
production scheduling. Springer, Berlin

Mechtaev S, Yi J, Roychoudhury A (2016) Angelix: Scalable multiline program patch synthesis via symbolic
analysis. In: International Conference on Software Engineering, ICSE ’16, pp 691–701

Moncao ACBL, Camilo CG, Queiroz LT, Rodrigues CL, de Sa Leitao P, Vincenzi AMR (2013) Shrink-
ing a database to perform SQL mutation tests using an evolutionary algorithm. In: IEEE Congress on
Evolutionary Computation (CEC), pp 2533–2539

Morrison RW, De Jong KA (2001) Measurement of population diversity. In: International Conference on
Artificial Evolution (Evolution Artificielle). Springer, pp 31–41

Nguyen HDT, Qi D, Roychoudhury A, Chandra S (2013) SemFix: program repair via semantic analysis. In:
International Conference on Software Engineering (ICSE), pp 772–781

Oliveira AAL, Camilo CG Jr, Vincenzi AMR (2013) A coevolutionary algorithm to automatic test case
selection and mutant in mutation testing. In: IEEE Congress on Evolutionary Computation (CEC),
pp 829–836

Oliveira VPL, Souza EF, Le Goues C, Camilo CG Jr (2016) Improved crossover operators for genetic pro-
gramming for program repair. In: International Symposium on Search Based Software Engineering
(SSBSE). Springer, pp 112–127

Orlov M, Sipper M (2011) Flight of the FINCH through the Java wilderness. IEEE Trans Evol Comput
15(2):166–182

Petke J, Harman M, Langdon WB, Weimer W (2014) Using genetic improvement and code transplants to
specialise a C++ program to a problem class. In: Genetic Programming, pp 137–149

Pressman RS (2001) Software engineering: a practitioner’s approach, 5th edn. McGraw-Hill Higher
Education, Burr Ridge

Qi Y, Mao X, Lei Y, Dai Z, Wang C (2014) The strength of random search on automated program repair. In:
International Conference on Software Engineering (ICSE), pp 254–265

Qi Z, Long F, Achour S, Rinard M (2015) An analysis of patch plausibility and correctness for generate-
and-validate patch generation systems. In: International Symposium on Software Testing and Analysis
(ISSTA), pp 24–36

Rawlins GJE (1991) Foundations of genetic algorithms. Morgan Kaufmann, San Francisco
Rothlauf F (2011) Design of modern heuristics: principles and application. Springer, Berlin
Saha D, Nanda MG, Dhoolia P, Nandivada VK, Sinha V, Chandra S (2011) Fault localization for data-centric

programs. In: Joint Meeting of the European Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE), pp 157–167

Schulte E, Forrest S, Weimer W (2010) Automated program repair through the evolution of assembly code.
In: Automated software engineering (ASE), pp 313–316

Schulte E, Dorn J, Harding S, Forrest S, Weimer W (2014) Post-compiler software optimization for reducing
energy. SIGARCH Comput Archit News 42(1):639–652

Silva S, Esparcia-Alcázar AI (eds.) (2015) Genetic and evolutionary computation conference companion
material proceedings, Workshop on Genetic Improvement, ACM

Smith EK, Barr E, Le Goues C, Brun Y (2015) Is the cure worse than the disease? Overfitting in auto-
mated program repair. In: Joint Meeting of the European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE), pp 532–543

Weimer W, Nguyen T, Le Goues C, Forrest S (2009) Automatically finding patches using genetic
programming. In: International Conference on Software Engineering (ICSE), pp 364–374

Weimer W, Fry ZP, Forrest S (2013) Leveraging program equivalence for adaptive program repair: models
and first results. In: Automated Software Engineering (ASE), pp 356–366

Wong WE, Gao R, Li Y, Abreu R, Wotawa F (2016) A survey on software fault localization. IEEE
Transactions on Software Engineering (TSE) 42(8):707–740

Zeller A (1999) Yesterday, my program worked. Today, it does not. Why? In: Joint Meeting of the European
Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), pp 253–267

Empir Software Eng (2018) 23:2980–3006 3005

Vinı́cius Paulo L. Oliveira received the BA degree in computer engineering from Federal University of
Goiás, the MSc degree in computer science. He is member of the robotics research group Pequi Mecânico,
where he works with robotic agent behaviors. He is interested in Artificial Intelligence applyed in robotics,
games, human-machine interaction and software problems. More information is available at: www.linkedin.
com/in/viniciusp-oliveira.

Eduardo Faria de Souza received the BA degree in Computer Science from Universidade Federal de Goiás,
Brazil. He is a MS student at the same university. He develops research in automated program repair and
computational intelligence.

www.linkedin.com/in/viniciusp-oliveira
www.linkedin.com/in/viniciusp-oliveira

3006 Empir Software Eng (2018) 23:2980–3006

Claire Le Goues received the BA degree in computer science from Harvard University and the MS and PhD
degrees from the University of Virginia. She is an assistant professor in the School of Computer Science
at Carnegie Mellon University, where she is primarily affiliated with the Institute for Software Research.
She is interested in how to construct high-quality systems in the face of continuous software evolution,
with a particular interest in automatic error repair. More information is available at: http://www.cs.cmu.edu/
∼clegoues.

Celso G. Camilo-Junior received the BA degree in computer science from Pontifical Catholic University
of Goiás, the MSc degree in computer engineering from the Federal University of Goiás and PhD degree in
computer engineering from the Federal University of Uberlandia. He is an associate professor in the Infor-
matics Institute at Federal University of Goiás. He is interested in how the Artificial Intelligence can improve
the solutions to the real problems in Software, Management and Healthcare domains. More information is
available at: http://www.inf.ufg.br/∼celso.

http://www.cs.cmu.edu/~clegoues
http://www.cs.cmu.edu/~clegoues
http://www.inf.ufg.br/~celso

	Improved representation and genetic operators for linear genetic programming for automated program repair
	Abstract
	Introduction
	Background
	Genetic Programming
	Genetic Programming
	Search Landscapes
	Distance Analysis

	GenProg for Program Repair
	Overview
	Search Space
	Representation
	Mutation
	Crossover

	Approach
	Illustrative Example
	Decoupled Representation
	Mutation Operator
	Crossover
	Three New Crossovers
	One Point Crossover on a Single Subspace
	Uniform Single Subspace
	One Point Across All Subspaces
	Information Loss

	Genetic Memory

	Distance Metric

	Experiments
	Setup
	Benchmarks
	Parameters and Metrics

	Crossover Operator Results
	Success Rate
	Efficiency
	Memory
	Subpatch Representation

	Mutation Operator Results
	Patch Quality
	Performance on Held-Out Test Suites
	Example Patch

	Distance Analysis
	Convergence
	Diversity

	Threats to Validity

	Related Work
	Conclusion
	Acknowledgements
	References

