
GenProg: A Generic Method
for Automatic Software Repair

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, Senior Member, IEEE, and Westley Weimer

Abstract—This paper describes GenProg, an automated method for repairing defects in off-the-shelf, legacy programs without formal

specifications, program annotations, or special coding practices. GenProg uses an extended form of genetic programming to evolve a

program variant that retains required functionality but is not susceptible to a given defect, using existing test suites to encode both the

defect and required functionality. Structural differencing algorithms and delta debugging reduce the difference between this variant and

the original program to a minimal repair. We describe the algorithm and report experimental results of its success on 16 programs

totaling 1.25 M lines of C code and 120K lines of module code, spanning eight classes of defects, in 357 seconds, on average. We

analyze the generated repairs qualitatively and quantitatively to demonstrate that the process efficiently produces evolved programs

that repair the defect, are not fragile input memorizations, and do not lead to serious degradation in functionality.

Index Terms—Automatic programming, corrections, testing and debugging.

Ç

1 INTRODUCTION

SOFTWARE quality is a pernicious problem. Mature soft-
ware projects are forced to ship with both known and

unknown bugs [1] because the number of outstanding
software defects typically exceeds the resources available to
address them [2]. Software maintenance, of which bug
repair is a major component [3], [4], is time-consuming and
expensive, accounting for as much as 90 percent of the cost
of a software project [5] at a total cost of up to $70 billion per
year in the US [6], [7]. Put simply: Bugs are ubiquitous, and
finding and repairing them are difficult, time-consuming,
and manual processes.

Techniques for automatically detecting software flaws
include intrusion detection [8], model checking and light-
weight static analyses [9], [10], and software diversity
methods [11], [12]. However, detecting a defect is only half
of the story: Once identified, a bug must still be repaired. As
the scale of software deployments and the frequency of
defect reports increase [13], some portion of the repair
problem must be addressed automatically.

This paper describes and evaluates Genetic Program
Repair (“GenProg”), a technique that uses existing test cases
to automatically generate repairs for real-world bugs in off-
the-shelf, legacy applications. We follow Rinard et al. [14] in
defining a repair as a patch consisting of one or more code
changes that, when applied to a program, cause it to pass a
set of test cases (typically including both tests of required
behavior as well as a test case encoding the bug). The test

cases may be human written, taken from a regression test
suite, steps to reproduce an error, or generated automati-
cally. We use the terms “repair” and “patch” interchange-
ably. GenProg does not require formal specifications,
program annotations, or special coding practices. GenProg’s
approach is generic, and the paper reports results demon-
strating that GenProg can successfully repair several types
of defects. This contrasts with related approaches which
repair only a specific type of defect (such as buffer overruns
[15], [16]).

GenProg takes as input a program with a defect and a set of
test cases. GenProg may be applied either to the full program
source or to individual modules. It uses genetic programming
(GP) to search for a program variant that retains required
functionality but is not vulnerable to the defect in question.
GP is a stochastic search method inspired by biological
evolution that discovers computer programs tailored to a
particular task [17], [18]. GP uses computational analogs of
biological mutation and crossover to generate new program
variations, which we call variants. A user-defined fitness
function evaluates each variant; GenProg uses the input test
cases to evaluate the fitness, and individuals with high fitness
are selected for continued evolution. This GP process is
successful when it produces a variant that passes all tests
encoding the required behavior and does not fail those
encoding the bug. Although GP has solved an impressive
range of problems (e.g., [19]), it has not previously been used
either to evolve off-the-shelf legacy software or to patch real-
world vulnerabilities, despite various proposals directed at
automated error repair, e.g., [20].

A significant impediment for GP efforts to date has been
the potentially infinite space that must be searched to find a
correct program. We introduce three key innovations to
address this longstanding problem [21]. First, GenProg
operates at the statement level of a program’s abstract syntax
tree (AST), increasing the search granularity. Second, we
hypothesize that a program that contains an error in one area
likely implements the correct behavior elsewhere [22].
Therefore, GenProg uses only statements from the program

54 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

. C. Le Goues and W. Weimer are with the Department of Computer Science,
University of Virginia, 85 Engineer’s Way, PO Box 400740, Charlottesville,
VA 22904-4740. E-mail: {legoues, weimer}@cs.virginia.edu.

. T. Nguyen and S. Forrest are with the Department of Computer Science,
University of New Mexico, MSC01 1130, 1 University of New Mexico,
Albuquerque, NM 87131-0001. E-mail: {tnguyen, forrest}@cs.unm.edu.

Manuscript received 16 Mar. 2010; revised 6 Oct. 2010; accepted 21 Sept.
2011; published online 30 Sept. 2011.
Recommended for acceptance by J.M. Atlee and P. Inverardi.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-2010-03-0078.
Digital Object Identifier no. 10.1109/TSE.2011.104.

0098-5589/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society



itself to repair errors and does not invent new code. Finally,
GenProg localizes genetic operators to statements that are
executed on the failing test case. This third point is critical:
Fault localization is, in general, a hard and unsolved
problem. The scalability of our approach relies on existing,
imperfect strategies, and there exist classes of defects (e.g.,
nondeterministic bugs) which cannot always be localized.
For the defects considered here, however, we find that these
choices reduce the search space sufficiently to permit the
automated repair of a varied set of both programs and errors.

The GP process often introduces irrelevant changes or
dead code along with the repair. GenProg uses structural
differencing [23] and delta debugging [24] in a postproces-
sing step to obtain a 1-minimal set of changes to the original
program that permits it to pass all of the test cases. We call
this set the final repair.

The main contributions of this paper are:

. GenProg, an algorithm that uses GP to automatically
generate patches for bugs in programs, as validated
by test cases. The algorithm includes a novel and
efficient representation and set of operations for
applying GP to this domain. This is the first work to
demonstrate the use of GP to repair software at the
scale of real, unannotated programs with publicly
documented bugs.

. Experimental results showing that GenProg can
efficiently repair errors in 16 C programs. Because
the algorithm is stochastic, we report success rates
for each program averaged over 100 trials. For every
program, at least one trial found a successful repair,
with the average success rates ranging from 7 to
100 percent. Across all programs and all trials, we
report an average success rate of 77 percent.

. Exerimental results demonstrating that the algo-
rithm can repair multiple types of errors in
programs drawn from multiple domains. The errors
span eight different defect types: infinite loop,
segmentation fault, remote heap buffer overflow to
inject code, remote heap buffer overflow to over-
write variables, nonoverflow denial of service, local
stack buffer overflow, integer overflow, and format

string vulnerability. The benchmark programs in-
clude Unix utilities, servers, media players, text
processing programs, and games. The 16 bench-
marks total over 1.25 M lines of code (LOC),
although GenProg operates directly on 120K lines
of program or module code.

Some of these points were previously presented in early

versions of this work [25], [26] or summarized for general

audiences [27]. This paper extends those results to include:

. New repairs. Previous work showed repairs on
11 programs totaling 63K lines of code and four
classes of errors. We present five additional programs,
and show that GenProg can operate on both an entire
program’s source code as well as at the module level.
The new benchmarks consist of 1.2M new lines of
source code, 60K new lines of repaired code (either
module or whole program), and four new types of
errors, a significant increase that substantiates Gen-
Prog’s ability to scale to real-world systems.

. Closed-loop repair. A description and proof-of-
concept evaluation of a closed-loop repair system that
integrates GenProg with anomaly intrusion detection.

. Repair quality. A partial evaluation of the quality of
the produced repairs, first manually and then quanti-
tatively, using indicative workloads, fuzz testing, and
variant bug-inducing input. Our preliminary findings
suggest that the repairs are not fragile memorizations
of the input, but instead address the defect while
retaining required functionality.

2 MOTIVATING EXAMPLE

In this section, we use an example defect to highlight the

important insights underlying the GenProg approach and

to motivate important design decisions.
Consider the pseudocode shown in Fig. 1a, adapted from

a remote-exploitable heap buffer overflow vulnerability in

the nullhttpd v0.5.0 webserver. Function Process

Request processes an incoming request based on data

copied from the request header. Note that on line 14, the call

to calloc to allocate memory to hold request contents trusts

LE GOUES ET AL.: GENPROG: A GENERIC METHOD FOR AUTOMATIC SOFTWARE REPAIR 55

Fig. 1. Pseudocode of a buggy webserver implementation, and a repaired version of the same program.



the content length provided by a POST request, as copied
from the header on line 8. A malicious attacker can provide a
negative value for Content-Length and a malicious
payload in the request body to overflow the heap and kill
or remotely gain control of the running server.

To automatically repair this program, we must first
codify desired behavior. For example, we can write a test
case that sends a POST request with a negative content
length and a malicious payload to the webserver, and then
checks the webserver to determine if it is still running.
Unmodified nullhttpd fails this test case.

At a high level, GenProg searches for valid variants of
the original program that do not display the specified
buggy behavior. However, searching randomly through
related programs may yield undesirable results. Consider
the following variant:

This version of ProcessRequest does not crash on the
bug-encoding test case, but also fails to process any
requests at all. The repaired program should pass the
error-encoding test case while retaining core functionality.
Such functionality can also be expressed with test cases,
such as a standard regression test that obtains
index.html and compares the retrieved copy against
the expected output.1

To satisfy these goals, program modifications should
ideally focus on regions of code that affect the bad behavior
without affecting the good behavior. We therefore employ a
simple fault localization strategy to reduce the search space.
We instrument the program to record all lines visited when
processing the test cases, and favor changes to locations that
are visited exclusively by the negative test case. The
standard regression test visits lines 1-12 and 18 (and lines
in DoGETRequest). The test case demonstrating the error
visits lines 1-11 and 13-18. Mutation and crossover opera-
tions are therefore focused on lines 13-17, which exclusively
implement POST functionality.

Despite this fault localization, there are still many
possible changes to explore. To further constrain the search,
we assume that most defects can be repaired by adapting
existing code from another location in the program. In
practice, a program that makes a mistake in one location
often handles a similar situation correctly in another [22].
This hypothesis is correct for nullhttpd. Although the
POST request handling in ProcessRequest does not do a
bounds check on the user-specified content length, the
cgi_main function, implemented elsewhere, does:

Fault localization biases the modifications toward POST
request code. The restriction to use only existing code for
insertions further limits the search, and eventually
GenProg tries inserting the check from cgi_main into
ProcessRequest, shown in Fig. 1b. A program with this
version of ProcessRequest passes both test cases; we call
it the primary repair. GP can produce spurious changes in
addition to those that repair the program; for example, the
search might have randomly inserted return DoGet

Request(socket,length) at line 22, after the original

return. This insertion is not dangerous because it will

never be executed, but it does not contribute to the repair.

We remove such extraneous changes in a postprocessing

step. The resulting minimal patch is the final repair; we

present it in traditional diff format.
We formalize this procedure and describe concrete

implementation details in the next section.

3 TECHNICAL APPROACH

Fig. 2 gives pseudocode for GenProg. GenProg takes as

input source code containing a defect and a set of test

cases, including a failing negative test case that exercises

the defect and a set of passing positive test cases that

describe requirements. The GP maintains a population of

program variants represented as trees. Each variant is a

modified instance of the original defective program; the

modifications are generated by the mutation and cross-

over operations, described in Section 3.2. The call to

initial population on line 4 uses mutation operators to

construct an initial GP population based on the input

program and test cases. A fitness function evaluates each

individual’s fitness, or desirability. GenProg uses the input

test cases to guide the GP search (lines 1-3 of Fig. 2,

Section 3.1) as well as to evaluate fitness (Section 3.3). A

GP iterates by selecting high-fitness individuals to copy

into the next generation (line 9, Section 3.2) and introdu-

cing variations with the mutation and crossover opera-

tions (lines 13-15 and line 10). This cycle repeats until a

goal is achieved—a variant is found that passes all the test

cases—or a predetermined resource limit is consumed.

Finally, GenProg minimizes the successful variant (line 17,

Section 3.4)

56 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

1. In practice, we use several test cases to express program requirements;
we describe only one here for brevity.

Fig. 2. High-level pseudocode for GenProg. Lines 5-16 describe the GP

search for a feasible variant. Subroutines such as mutateðV ; PathV Þ are

described subsequently.



3.1 Program Representation

GenProg represents each variant (candidate program) as a
pair:

1. An abstract syntax tree that includes all of the
statements in the program.

2. A weighted path consisting of a list of program
statements, each associated with a weight based on
that statement’s occurrence in various test case
execution traces.

GenProg generates a program AST using the off-the-
shelf CIL toolkit [28]. ASTs express program structure at
multiple levels of abstraction or granularity. GenProg
operates on the constructs that CIL defines as statements,
which includes all assignments, function calls, conditionals,
blocks, and looping constructs. GenProg does not directly
modify expressions such as “(1-2)” or “(!p)” nor does it
ever directly modify low-level control-flow directives such
as break, continue, or goto. This genotype representa-
tion reflects a tradeoff between expressive power and
scalability. Because of these constraints on permitted
program modifications, the GP never generates syntacti-
cally ill-formed programs (e.g., it will never generate
unbalanced parentheses). However, it can generate variants
that fail to compile due to a semantic error by, for example,
moving the use of a variable out of scope.

The weighted path is a sequence of hstatement;weighti
pairs that constrains the mutation operators to a small,
likely relevant (more highly weighted) subset of the
program tree. Statements not on the weighted path (i.e.,
with weight 0) are never modified, although they may be
copied into the weighted path by the mutation operator (see
Section 3.2). Each new variant has the same number of pairs
and the same sequence of weights in its weighted path as
the original program. This is necessary for the crossover
operation (described below).

To construct the weighted path, we apply a transforma-
tion that assigns each statement a unique number and
inserts code to log an event (visit) each time the statement is
executed (lines 1-2 of Fig. 2). Duplicate statements are
removed from the list: That is, we do not assume that a
statement visited frequently (e.g., in a loop) is likely to be a
good repair site. However, we do respect statement order
(determined by the first time a statement is visited), so the
weighted path is a sequence, rather than a set. Any
statement visited during the execution of a negative test
case is a candidate for repair, and its initial weight is set to
1.0. All other statements are assigned a weight of 0.0 and
never modified. The initial weights of the statements on the
negative test case execution path are modified further by
changing the weights of those statements that were also
executed by a positive test case. The goal is to bias the
modifications toward portions of the source code that are
likely to affect the bad behavior, while avoiding those that
influence good behavior. set weightsðPathNegT ; PathPosT Þ
on line 3 of Fig. 2 sets the weight of every path statement
that is visited during at least one positive test case to a
parameter WPath. Choosing WPath ¼ 0 prevents modifica-
tion of any statement visited during a positive test case by
removing it from the path; we found that values such as
WPath ¼ 0:01 typically work better in practice.

The weighted path serves to localize the fault. This fault
localization strategy is simple, and by no means state of the
art, but has worked in practice for our benchmark
programs. We do not claim any new results in fault
localization, and instead view it as an advantage that we
can use relatively off-the-shelf approaches. Path weighting
is necessary to repair the majority of the programs we have
investigated: Without it, the search space is typically too
large to search efficiently. However, effective fault localiza-
tion for both automatic and manual repair remains a
difficult and unsolved problem, and there exist certain
types of faults which remain difficult to impossible to
localize. We expect that GenProg will improve with
advances in fault localization, and leave the extension of
the technique to use more sophisticated localization
methods as future work.

3.2 Selection and Genetic Operators

Selection. The code on lines 6-9 of Fig. 2 implements the
process by which GenProg selects individual variants to
copy over to the next generation. GenProg discards
individuals with fitness 0 (variants that do not compile or
that pass no test cases) and places the remainder in V iable

on line 6. It then uses a selection strategy to select pop size=2
members of a new generation from the previous iteration;
these individuals become the new mating pool. We have
used both stochastic universal sampling [29], in which each
individual’s probability of selection is directly proportional
to its relative fitness f , and tournament selection [30], where
small subsets of the population are selected randomly (a
tournament) and the most fit member of the subset is
selected for the next generation. This process is iterated
until the new population is selected. Both selection
techniques produce similar results in our application.

Two GP operators, mutation and crossover, create new
variants from this mating pool.

Mutation. Fig. 3 shows the high-level pseudocode for the
mutation operator. Mutation has a small chance of changing
any particular statement along the weighted path (line 1).
Changes to statements in PathP are reflected in its
corresponding AST P . A statement is mutated with

LE GOUES ET AL.: GENPROG: A GENERIC METHOD FOR AUTOMATIC SOFTWARE REPAIR 57

Fig. 3. The mutation operator. Updates to PathP also update the AST P .



probability equal to its weight, with the maximum number
of mutations per individual determined by the global
mutation rate (the parameter Wmut, set to 0.06 and 0.03 in
our experiments; see Section 5.1). Line 2 uses these
probabilities to determine if a statement will be mutated.

In genetic algorithms, mutation operations typically
involve single bit flips or simple symbolic substitutions.
Because our primitive unit is the statement, our mutation
operator is more complicated, and consists of either a
deletion (the entire statement is deleted), an insertion
(another statement is inserted after it), or a swap with
another statement. We choose from these options with
uniform random probability (line 3). In the case of an
insertion or swap, a second statement stmtj is chosen
uniformly at random from anywhere in the program (lines 5
and 8), not just along the weighted path; a statement’s
weight does not influence the probability that it is selected as
a candidate repair. This reflects our intuition about related
changes: A program missing a null check probably includes
one somewhere, but not necessarily on the negative path. In
a swap, stmti is replaced by stmtj, while at the same time
stmtj is replaced by stmti. We insert by transforming stmti
into a block statement that contains stmti followed by stmtj.
In the current implementation, stmtj is not modified when
inserted, although we note that intermediate variants may
fail to compile if code is inserted which references out-of-
scope variables. Deletions transform stmti into an empty
block statement; a deleted statement may therefore be
modified in a later mutation operation.

In all cases, the new statement retains the old statement
weight to maintain the invariant of uniform path lengths
and weights between program variants and because
inserted and swapped statements may not come from the
weighted path (and may thus have no initial weight of
their own).

Crossover. Fig. 4 shows the high-level pseudocode for
the crossover operator. Crossover combines the “first part”
of one variant with the “second part” of another, creating
offspring variants that combine information from two
parents. The crossover rate is 1.0—every surviving variant
in a population undergoes crossover, though a variant will
only be the parent in one such operation per generation.
Only statements along the weighted paths are crossed over.
We choose a cutoff point along the paths (line 1) and swap
all statements after the cutoff point. We have experimented

with other crossover operators (e.g., a crossover biased by
path weights and a crossover with the original program)
and found that they give similar results to the one-point
crossover shown here.

3.3 Fitness Function

The fitness function evaluates the acceptability of a
program variant. Fitness provides a termination criterion
for the search and guides the selection of variants for the
next generation. Our fitness function encodes software
requirements at the test case level: negative test cases
encode the fault to be repaired, while positive test cases
encode functionality that cannot be sacrificed. We compile
the variant’s AST to an executable program, and then
record which test cases the executable passes. Each
successful positive test is weighted by the global para-
meter WPosT ; each successful negative test is weighted by
the global parameter WNegT . The fitness function is thus
simply the weighted sum

fitnessðP Þ ¼WPosT � jft 2 PosT j P passes tgj
þWNegT � jft 2 NegT j P passes tgj:

The weights WPosT and WNegT should be positive; we give
concrete values in Section 5. A variant that does not compile
has fitness zero. For full safety, the test case evaluations can
be run in a virtual machine or similar sandbox with a time
out. Since test cases validate repair correctness, test suite
selection is an important consideration.

3.4 Repair Minimization

The search terminates successfully when GP discovers a
primary repair that passes all test cases. Due to randomness
in the mutation and crossover algorithms, the primary
repair typically contains at least an order-of-magnitude
more changes than are necessary to repair the program,
rendering the repairs difficult to inspect for correctness.
Therefore, GenProg minimizes the primary repair to
produce the final repair, expressed as a list of edits in
standard diff format. Defects associated with such patches
are more likely to be addressed [31].

GenProg performs minimization by considering each
difference between the primary repair and the original
program and discarding every difference that does not
affect the repair’s behavior on any of the test cases. Standard
diff patches encode concrete, rather than abstract syntax.
Since concrete syntax is inefficient to minimize, we have
adapted the DIFFX XML differencing algorithm [23] to work
on CIL ASTs. Modified DIFFX generates a list of tree-
structured edit operations, such as “move the subtree rooted
at node X to become the Y th child of node Z.” This
encoding is typically shorter than the corresponding diff

patch, and applying part of a tree-based edit never results in
a syntactically ill-formed program, both of which make such
patches easier to minimize.

The minimization process finds a subset of the initial
repair edits from which no further elements can be dropped
without causing the program to fail a test case (a 1-minimal
subset). A brute-force search through all subsets of the initial
list of edits is infeasible. Instead, we use delta debugging [24]
to efficiently compute the one-minimal subset, which is

58 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

Fig. 4. The crossover operator. Updates to PathC and PathD update the

ASTs C and D.



Oðn2Þ worst case [32]. This minimized set of changes is the
final repair. DIFFX edits can be converted automatically to
standard diff patches, which can either be applied
automatically to the system or presented to developers for
inspection. In this paper, patch sizes are reported in the
number of lines of a Unix diff patch, not DIFFX operations.

4 REPAIR DESCRIPTIONS

In this section, we substantiate the claim that automated
repair of real-world defects is possible by describing several
buggy programs and examples of the patches that GenProg
generates. The benchmarks for all experiments in this and
subsequent sections are shown in Fig. 5. The defects
considered include infinite loops, segmentation faults,
several types of memory allocation errors, integer overflow,
and a well-known format string vulnerability. In most cases,
we consider all of the program source when making a
repair; in a few cases we restrict attention to the single
module visited by the negative test case. gcd is a small
example based on Euclid’s algorithm for computing great-
est common divisors. zune is a fragment of code that
caused all Microsoft Zune media players to freeze on 31
December 2008. The Unix utilities were taken from Miller et
al.’s work on fuzz testing, in which programs crash when
given random inputs [34]. The remaining benchmarks are
taken from public vulnerability reports.

In the following sections, we describe several case
studies of several exemplar repairs, only one of which has
been previously published. The case studies are all taken
from the security domain, but they illustrate the repair
process in the context of large programs with publicly
documented bugs. In each case, we first describe the bug
that corresponds to a public vulnerability report; we then
describe an indicative patch discovered by GenProg.

4.1 nullhttpd: Remote Heap Buffer Overflow

The nullhttpd webserver is a lightweight multithreaded
webserver that handles static content as well as CGI scripts.

Version 0.5.0 contains a heap-based buffer overflow
vulnerability that allows remote attackers to execute
arbitrary code (Section 2 illustrates this vulnerability for
explanatory purposes). nullhttpd trusts the Content-

Length value provided by the user in the HTTP header of
POST requests; negative values cause nullhttpd to
overflow a buffer.

We used six positive test cases that include both GET and
POST requests and a publicly available exploit to create the
negative test case. The negative test case request crashes
the webserver, which is not set to respawn. To determine if
the attack succeeded we insert a legitimate request for
index.html after the exploit; the negative test case fails if
the correct index.html is not produced.

The actual buffer overflow occurs in the ReadPOST

Data() function, defined in http.c:

The value in_ContentLength is supplied by the
attacker. However, there is a second location in the
program, the cgi_main() function on line 267 of cgi.c,
where POST-data are processed and copied:

The evolved repair changes the high-level read_

header() function so that it uses the POST-data
processing in cgi_main() instead of calling ReadPost

Data. The final, minimized repair is five lines long.

LE GOUES ET AL.: GENPROG: A GENERIC METHOD FOR AUTOMATIC SOFTWARE REPAIR 59

Fig. 5. Benchmark programs used in our experiments, with size of the program and the repaired program segment in lines of code. The Unix utilities

are repaired in their entirety. However, for example, while the entire wu-ftpd server was processed as a unit, a smaller io module of openldap
was selected for repair. A y indicates an openly available exploit.



Although the repair is not the one supplied in the next
release by human developers—which inserts local bounds-
checking code in ReadPOSTData()—it both eliminates
the vulnerability and retains desired functionality.

4.2 openldap: Nonoverflow Denial of Service

The openldap server implements the lightweight directory
access protocol, allowing clients to authenticate and make
queries (e.g., to a company’s internal telephone directory).
Version 2.3.41 is vulnerable to a denial of service attack.
LDAP encodes protocol elements using a lightweight basic
encoding rule (BER); nonauthenticated remote attackers can
crash the server by making improperly formed requests.

The assertion visibly fails in liblber/io.c, so we
restricted attention to that single file to demonstrate that we
can repair program modules in isolation without requiring
a whole-program analysis. To evaluate the fitness of a
variant io.c we copied it in to the openldap source tree
and ran make to rebuild and link the liblber library, then
applied the test cases to the resulting binary.

The positive test cases consist of an unmodified 25-second
prefix of the regression suite that ships with openldap. The
negative test case was a copy of a positive test case with an
exploit request inserted in the middle:

The problematic code is around line 522 of io.c:

The for loop contains both a sanity check and
processing for large ber tags. The first 127 tag values are
represented with a single byte: If the high bit is set, the next
byte is used as well, and so on. The repair removes the
entire loop (lines 516-524), leaving the “run out of bytes”
check untouched. This limits the number of BER tags that
the repaired openldap can handle to 127. A more natural
repair would be to fix the sanity check while still supporting
multibyte BER tags. However, only about 30 tags are
actually defined for openldap requests, so the repair is fine
for all openldap uses, and passes all the tests.

4.3 lighttpd: Remote Heap Buffer Overflow

lighttpd is a webserver optimized for high-performance
environments; it is used by YouTube and Wikimedia,
among others. In Version 1.4.17, the fastcgi module,
which improves script performance, is vulnerable to a heap
buffer overflow that allows remote attackers to overwrite
arbitrary CGI variables (and thus control what is executed)
on the server machine. In this case, GenProg repaired a

dynamically linked shared object, mod_fastcgi.so, with-
out touching the main executable.

The positive test cases included requests for static
content (i.e., GET index.html) and a request to a 50-line
CGI Perl script which, among other actions, prints all server
and CGI environment variables. The negative test case is the
request shown in Fig. 6, which uses a known exploit to
retrieve the contents of /etc/passwd—if the file contents
are not returned, the test case passes.

The key problem is with the fcgi_env_add function,
which uses memcpy to add data to a buffer without proper
bounds checks. fcgi_env_add is called many times in a
loop by fcgi_create_env, controlled by the following
bounds calculation:

The repair modifies this calculation to:

weWant is thus uninitialized, causing the loop to exit early
on very long data allocations. However, the repaired server
can still report all CGI and server environment variables
and serve both static and dynamic content.

4.4 php: Integer Overflow

The php program is an interpreter for a popular web-
application scripting language. Version 5.2.1 is vulnerable
to an integer overflow attack that allows context-dependent
attackers to execute arbitrary code by exploiting the way the
interpreter calculates and maintains bounds on string
objects in single-character string replacements. As with
the openldap repair example, we restricted GenProg’s
operations to the string processing library.

We manually generated three positive test cases that
exercise basic PHP functionality, including iteration, string
splitting and concatenation, and popular built-in functions
such as explode. The negative test case included basic PHP
string processing before and after the following exploit code:

A program variant passed this test if it produced the correct
output without crashing.

Single-character string replacement replaces every in-
stance of a character (“A” in the attack) in a string (65,538
“A”s) with a larger string (65,535 “B”s). This functionality is
implemented by php_char_to_str_ex, which is called

60 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

Fig. 6. Exploit POST request for lighttpd. The random text creates a

request of the correct size; line 9 uses a fake FastCGI record to mark the

end of the data. Line 10 overwrites the execute script so that the

vulnerable server responds with the contents of /etc/passwd.



by function php_str_replace_in_subject at line 3478
of file string.c:

php_str_replace_in_subject uses a macro

Z_STRLEN_P, defined in a header file, to calculate the

new string length. This macro expands to len + (char_

count � (to_len - 1)) on line 3,480, wrapping around to

a small negative number on the exploitative input. The

repair changes lines 3,476-3,482 to:

3476 if (Z_STRLEN_P(search) != 1) {

Single-character string replaces are thus disabled, with

the output set to an unchanged copy of the input, while
multicharacter string replaces, performed by php_str_

to_str_ex, work as before. The php_str_to_str_ex

function replaces every instance of one substring with
another and is not vulnerable to the same type of integer

overflow as php_char_to_str_ex because it calculates

the resulting length differently. Disabling functionality to
suppress a security violation is often a legitimate response

in this context: Many systems can be operated in a “safe

mode” or “read-only mode.” Although acceptable in this
situation, disabling functionality could have deleterious

consequences in other settings; we address this issue in

Section 6.2.

4.5 wu-ftpd: Format String

wu-ftpd is an FTP server that allows for anonymous and
authenticated file transfers and command execution. Ver-

sion 2.6.0 is vulnerable to a well-known format string

vulnerability. If SITE EXEC is enabled, a user can execute a

restricted subset of quoted commands on the server. Because
the user’s command string is passed directly to a printf-

like function, anonymous remote users gain shell access by

using carefully selected conversion characters. Although the
exploit is similar in structure to a buffer overrun, the

underlying problem is a lack of input validation. GenProg

operated on the entire wu-ftpd source.
We used five positive test cases (obtaining a directory

listing, transferring a text file, transferring a binary file,

correctly rejecting an invalid login, and an innocent SITE

EXEC command). The negative test used an posted exploit
to dynamically craft a format string for the target

architecture.
The bug is in the site_exec() function of ftpcmd.y,

which manipulates the user-supplied buffer cmd:

lreply(x,y,z...) provides logging output by
printing the executing command and providing the return
code (200 denotes success in the FTP protocol). The
lreply(200,cmd) on line 1,889 calls printf(cmd),
which, with a carefully crafted cmd format string, compro-
mises the system. The explicit attempt to sanitize cmd by
skipping past slashes and converting to lowercase does not
prevent format-string attacks. The repair replaces
lreply(200,cmd) with lreply(200, (char *)“”),
which disables verbose debugging output on cmd itself, but
does report the return code and the properly sanitized
site_exec in buf while maintaining required functional-
ity.

5 GENPROG REPAIR PERFORMANCE

This section reports the results of experiments that use
GenProg to repair errors in multiple legacy programs:
1) evaluating repair success over multiple trials and
2) measuring performance and scalability in terms of fitness
function evaluations and wall-clock time.

5.1 Experimental Setup

Programs and Defects. The benchmarks consist of all
programs in Fig. 5. These programs total 1.25M LOC; the
repaired errors span eight defect classes (infinite loop,
segmentation fault, remote heap buffer overflow to inject
code, remote heap buffer overflow to overwrite variables,
nonoverflow denial of service, local stack buffer overflow,
integer overflow, and format string vulnerability) and are
repaired in 120K lines of module or program code. Our
experiments were conducted on a quad-core 3 GHz machine.

Test cases. For each program, we used a single negative
test case that elicits the given fault. For the Unix utilities, we
selected the first fuzz input that evinced a fault; for the others,
we constructed test cases based on the vulnerability reports
(see Section 4, for examples). We selected a small number
(e.g., 2-6) of positive test cases per program. In some cases, we
used noncrashing fuzz inputs; in others, we manually created
simple cases, focusing on testing relevant program function-
ality; for openldap, we used part of its test suite.

Parameters. We report results for one set of global
GenProg parameters that seemed to work well. We chose
pop size ¼ 40, which is small compared to typical GP
applications; on each trial, we ran the GP for a maximum
of 10 generations (also a small number). For fitness

LE GOUES ET AL.: GENPROG: A GENERIC METHOD FOR AUTOMATIC SOFTWARE REPAIR 61



computation, we set WPosT ¼ 1 and WNegT ¼ 10. In related
work [35], we note that it is possible to select more precise
weights, as measured by the fitness distance correlation
metric [36]. However, we find that the values used here
work well on our benchmark set. These heuristically chosen
values capture our intuition that the fitness function should
emphasize repairing the fault and that the positive test
cases should be weighted evenly. We leave a more
thorough exploration for future work.

With the above parameter settings fixed, we experimen-
ted with two parameter settings for WPath and Wmut:

fWPath ¼ 0:01;Wmut ¼ 0:06g
fWPath ¼ 0:00;Wmut ¼ 0:03g:

Note that WPath ¼ 0:00 means that statements executed by
both the negative test case and any positive test case will
not be mutated, and WPath ¼ 0:01 means such statements
will be considered infrequently. The parameter set WPath ¼
0:01 and Wmut ¼ 0:06 works well in practice. Additional
experiments show that GenProg is robust to changes in
many of these parameters, such as population size, and that
varying the selection or crossover techniques has a small
impact on time to repair or success [26]. We have
experimented with higher probabilities, finding that success
worsens beyond Wmut > 0:12.

The weighted path length is the weighted sum of
statements on the negative path and provides one estimate
of the complexity of the search space. Statements that
appear only on the negative path receive a weight of 1.0,
while those also on a positive path receive a weight of
WPath. This metric is correlated with algorithm performance
(Section 5.3).

Trial. We define a trial to consist of at most two serial
invocations of the GP loop using the parameter sets above
in order. We stop a trial if an initial repair is found;
otherwise, the GP is run for 10 generations per parameter
set. We performed 100 random trials for each program and
report the percentage of trials that produce a repair, average
time to the initial repair in a successful trial, and time to
minimize a final repair, a deterministic process performed
once per successful trial.

An initial repair is one that passes all input test cases.
Given the same random seed, each trial is deterministically
reproducible and leads to the same repair. With unique
seeds and for some programs, GenProg generates several
different patches over many random trials. For example,
over 100 random trials, GenProg produces several different
acceptable patches for ccrypt, but only ever produces one
such patch for openldap. Such disparities are likely related
to the program, error, and patch type. We do not report the
number of different patches found because, in theory, there
are an infinite number of ways to address any particular
error. However, we note that our definition of repair as a set
of changes that cause a program to pass all test cases renders
all such patches “acceptable.” Ranking of different but
acceptable patches remains an area of future investigation.

Optimizations. When calculating fitness, we memorize
fitness results based on the pretty-printed abstract syntax
tree so that two variants with different ASTs but identical
source code are not evaluated twice. Similarly, variants that

are copied unchanged to the next generation are not
reevaluated. Beyond such caching, the prototype tool is
not optimized. In particular, we do not take advantage of
the fact that the GP repair task is embarrassingly parallel:
Both the fitness of all variant programs and also the test
cases for any individual variant can all be evaluated
independently [25].

5.2 Repair Results

Fig. 7 summarizes repair results for 16 C programs. The
“Initial Repair” heading reports timing information for the
GP phase and does not include the time for repair
minimization. The “Time” column reports the average
wall-clock time per trial that produced a primary repair;
execution time is analyzed in more detail in Section 5.3.
Repairs are found in 357 seconds on average. The “fitness”
column shows the average number of fitness evaluations
per successful trial, which we include because fitness
function evaluation is the dominant expense in most GP
applications and the measure is independent of specific
hardware configuration. The “Success” column gives the
fraction of trials that were successful. On average, over
77 percent of the trials produced a repair, although most of
the benchmarks either succeeded very frequently or very
rarely. Low success rates can be mitigated by running
multiple independent trials in parallel. The “Size” column
lists the size of the primary repair diff in lines.

The “Final Repair” heading gives performance informa-
tion for transforming the primary repair into the final repair
and a summary of the effect of the final repair, as judged by
manual inspection. Minimization is deterministic and takes
less time and fewer fitness evaluations than the initial repair
process. The final minimized patch is quite manageable,
averaging 5.1 lines.

Of the 16 patches, seven insert code (gcd, zune, look-
u, look-s, units, ccrypt, and indent), seven delete
code (uniq, deroff, openldap, lighttpd, flex,
atris, and php), and two both insert and delete code
(nullhttpd and wu-ftpd). Note that this does not speak
to the sequence of mutations that lead to a given repair,
only the operations in the final patch: A swap followed by
a deletion may result in a minimized patch that contains
only an insertion.

While a comprehensive code review is beyond the scope
of this paper, manual inspection suggests that the produced
patches are acceptable. We note that patches that delete
code do not necessarily degrade functionality: The deleted
code may have been included erroneously, or the patch may
compensate for the deletion with an insertion. The uniq,
deroff, and flex patches delete erroneous code and do
not degrade untested functionality. The openldap patch
removes unnecessary faulty code (handling of multibyte
BER tags, when only 30 tags are used), and thus does not
degrade functionality in practice. The nullhttpd and
wu-ftpd patches delete faulty code and replace them by
inserting nonfaulty code found elsewhere. The wu-ftpd

patch disables verbose logging output in one source
location, but does not modify the functionality of the
program itself, and the nullhttpd patch does not degrade
functionality. The effect of the lighttpd patch is machine-
specific: It may reduce functionality on very long messages,
though, in our experiments, it did not. More detailed patch

62 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012



descriptions are provided in Section 4, above; we evaluate

repair quality using indicative workloads and held-out fuzz

testing in Section 6.
In many cases it is also possible to insert code without

negatively affecting the functionality of a benchmark

program. The zune and gcd benchmarks both contain

infinite loops: zune when calculating dates involving leap

years, and gcd if one argument is zero. In both cases,

the repair involves inserting additional code: For gcd, the

repair inserts code that returns early (skipping the infinite

loop) if the argument is zero. In zune, code is added to

one of three branches that decrements the day in the main

body of the loop (allowing leap years with exactly 366 days

remaining to be processed correctly). In both of these

cases, the insertions are carefully guarded so as to apply

only to relevant inputs (i.e., zero-valued arguments or

tricky leap years), which explains why the inserted code

does not negatively impact other functionality. Similar

behavior is seen for look-s, where a buggy binary search

over a dictionary never terminates if the input dictionary

is not presorted. Our repair inserts a new exit condition to

the loop (i.e., a guarded break). A more complicated

example is units, in which user input is read into a static

buffer without bounds checks, a pointer to the result is

passed to a lookup() function, and the result of

lookup() is possibly dereferenced. Our repair inserts

code into lookup() so that it calls an existing initializa-

tion function on failure (i.e., before the return), reinitia-

lizing the static buffer and avoiding the segfault.

Combined with the explanations of repairs for nullhttpd

(Section 4.1) and wuftpd (Section 4.5), which include both

insertions and deletions, these changes are indicative of
repairs involving inserted code.

This experiment demonstrates that GenProg can success-
fully repair a number of defect types in existing programs in
a reasonable amount of time. Reports suggest that it takes
human developers 28 days on average to address even
security-critical repairs [37]; nine days elapsed between the
posted exploit source for wu-ftpd, and the availability of
its patch.

5.3 Scalability and Performance

GenProg is largely CPU-bound. An average repair run took
356.5 seconds. Fig. 8 shows the proportion of time taken by
each important component. Executing the test cases for the
fitness function takes much of this time: on average,
positive test cases take 29:76%� 24:0 and negative test
cases 32:99%� 23:17 of the time. In total, fitness evaluations
comprise 62:75%� 30:37 of total repair time. Many test
cases include time outs (e.g., negative test cases that specify
an infinite-loop error); others involve explicit internal
delays (e.g., ad hoc instructions to wait 2 seconds for the
web server to get “up and running” before requests are
sent; the openldap test suite makes extensive use of this
type of delay), contributing to their runtime. Compilation of
variants averaged 27:13%� 22:55 of repair time. Our initial
implementation makes no attempt at incremental compila-
tion. The high standard deviations arise from the widely
varying test suite execution times (e.g., from 0.2 seconds for
zune to 62.7 seconds for openldap).

Fig. 9 plots weighted path length against search time,
measured as the average number of fitness evaluations until
the first repair, on a log-log scale. The straight line suggests

LE GOUES ET AL.: GENPROG: A GENERIC METHOD FOR AUTOMATIC SOFTWARE REPAIR 63

Fig. 7. Experimental results on 120K lines of program or module source code from programs totaling 1.25M lines of source code. We report averages
for 100 random trials. The “Positive Tests” column describes the positive tests. The “|Path|” columns give the weighted path length. “Initial Repair”
gives the average performance for one trial, in terms of “Time” (the average time taken for each successful trial), “fitness” (the average number of
fitness evaluations in a successful trial), “Success” (how many of the random trials resulted in a repair). “Size” reports the average Unix diff size
between the original source and the primary repair, in lines. “Final Repair” reports the same information for the production of a 1-minimal repair from
the first initial repair found; the minimization process always succeeds. “Effect” describes the operations performed by an indicative final patch: A
patch may insert code, delete code, or both insert, and delete code.



a relationship following a power law of the form y ¼ axb,
where b is the best-fit slope and b ¼ 1 indicates a linear
relationship. Fig. 9 suggests that the relationship between
path length and search time is less than linear with slope
0.8. Recall that the weighted path is based on observed test
case behavior and not on the much larger number of loop-
free paths in the program. We note that weighted path
length does not fully measure the complexity of the search
space; notably, as program size grows, the number of
possible statements that could be swapped or inserted
along the path grows, which is not accounted for in the
weighted path length. Accordingly, this relationship is only
an approximation of scalability, and search time may not
grow sublinearly with search space using other measures.
However, the results in Fig. 9 are encouraging, because they
suggest that search time is governed more by weighted path
rather than program size.

The test cases comprise fitness evaluation and define
patch correctness; test suite selection is thus important to
both scalability and correctness. For example, when repair-
ing nullhttpd without a positive test case for POST-data
functionality, GenProg generates a repair that disables
POST functionality entirely. In this instance, all of the
POST-processing functionality is on the weighted path (i.e.,
visited by the negative test case but not by any positive test
cases) and deleting those statements is the most expedient
way to find a variant that passes all tests. As a quick fix this
is not unreasonable and is safer than the common alarm
practice of running in read-only mode. However, including
the POST-functionality test case leads GenProg to find a
repair that does not remove functionality. Adding positive
test cases can actually reduce the weighted path length
while protecting core functionality, and thus improve the
success rate while possibly also increasing runtime.
Experiments have shown that larger test suites increase
fitness variability in early GP generations [26]; additional

experiments confirm that test suite selection techniques can
improve the performance of GenProg on programs with
large regression suites, reducing repair times by up to
80 percent while finding the same repairs [35].

These results suggest that GenProg can repair off-the-
shelf code in a reasonable amount of time, that GenProg
performance scales with the size of the weighted path, and
that there are several viable avenues for applying the
technique to larger programs with more comprehensive test
suites in the future.

6 GENPROG REPAIR QUALITY

Although the results of the previous sections are encoura-
ging, they do not systematically address the important issue
of repair quality. GenProg’s reliance on positive test cases
provides an important check against lost functionality. The
use of test cases exclusively to define acceptability admits
the possibility of repairs that degrade the quality of the
design of a system or make a system more difficult to
maintain, concerns that are difficult to evaluate automati-
cally and are beyond the scope of this paper. However,
certain dangers posed by, for example, inadequate test
suites—such as repairs that reduce functionality or intro-
duce vulnerabilites—can be evaluated automatically using
indicative workloads, held-out test cases, and fuzz testing.

Additionally, the claim of automated program repair
relies on manual initialization and dispatch of GenProg. In
principle, automated detection techniques could signal the
repair process to complete the automation loop. Integrating
GenProg with automated error detection produces a closed-
loop error detection and repair system that would allow us

64 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

Fig. 8. Percentage of total repair time spent on particular repair tasks.
Fig. 9. GenProg execution time scales with weighted path size. Data are
shown for 17 benchmark programs, including some not described here
(included for increased statistical significance; see [35] for details on the
additional benchmarks) and excluding gcd and zune. The x-axis shows
weighted path length; the y-axis shows the number of fitness evaluations
performed before a primary repair is found (averaged over 100 runs).
Note the base-10 log-log scale.



to study repair quality and overhead on programs with
realistic workloads.

This section therefore evaluates GenProg in the context
of a proof-of-concept closed-loop system for webserver-
based programs, with several experimental goals:

1. outline the prototype closed-loop repair system and
enumerate new experimental concerns,

2. measure the performance impact of repair time and
quality on a real, running system, including the
effects of a functionality reducing repair on system
throughput,

3. analyze the quality of the generated repairs in terms
of functionality using fuzz testing and variant bug-
inducing input, and

4. measure the costs associated with intrusion-detec-
tion system (IDS) false positives.

6.1 Closed-Loop System Overview

Our proposed closed-loop repair system has two require-
ments beyond the input required by GenProg: 1) anomaly
detection in near-real time, to provide a signal to launch the
repair process, and 2) the ability to record and replay
system input [38] so we can automatically construct a
negative test case. Anomaly detection could be provided by
existing behavior-based techniques that run concurrently
with the program of interest, operating at almost any level
(e.g., by monitoring program behavior, examining network
traffic, using saved state from regular checkpoints, etc.).
Our prototype adopts an intrusion-detection system that
detects suspicious HTTP requests based on request features
[39]. In a preprocessing phase, the IDS learns a probabilistic
finite state machine model of normal requests using a large
training set of legitimate traffic. After training, the model
labels subsequent HTTP requests with a probability
corresponding to “suspiciousness.”

Given these components, the system works as follows:
While the webserver is run normally and exposed to
untrusted inputs from the outside world, the IDS checks for
anomalous behavior, and the system stores program state
and each input while it is being processed. When the IDS
detects an anomaly, the program is suspended, and
GenProg is invoked to repair the suspicious behavior. The
negative test case is constructed from the IDS-flagged input:
A variant is run in a sandbox on the input with the program
state stored from just before the input was detected. If the
variant terminates successfully without triggering the IDS,
the negative test case passes; otherwise, it fails. The positive
tests consist of standard system regression tests. For the
purpose of these experiments, we use the tests described in

Section 5 to guide the repair search, and add new, large
indicative workloads to evaluate the effect of the repair
search and deployment on several benchmarks.

If a patch is generated, it can be deployed immediately. If
GenProg cannot locate a viable repair within the time limit,
subsequent identical requests should be dropped and an
operator alerted. While GenProg runs, the system can either
refuse requests, respond to them in a “safe mode” [40], or
use any other technique (e.g., fast signature generation [41])
to filter suspicious requests. Certain application domains
(e.g., supply chain management requests, banking, or e-
commerce) support buffering of requests received during
the repair procedure, so they can be processed later.

Fig. 10 summarizes the effects of the proposed system on
a running program; these effects depend on the anomaly
detector’s misclassification rates (false positives/negatives)
and the efficacy of the repair method. The integration of
GenProg with an IDS creates two new areas of particular
concern. The first new concern, Case 3, is the effect of an
imperfect repair (e.g., one that degrades functionality not
guaranteed by the positive tests) to a true vulnerability,
which can potentially lead to the loss of legitimate requests
or, in the worst case, new vulnerabilities. For security
vulnerabilities in particular, any repair system should
include a strong final check of patch validity before
deployment. To evaluate the suitability of GenProg on real
systems, it is therefore important to gain confidence, first
that GenProg repairs underlying errors and second that it is
unlikely to introduce new faults. In Case 6, a “repair”
generated in response to an IDS false alarm could also
degrade functionality, again losing legitimate requests.

The remainder of this section evaluates these concerns,
and uses them as a framework to motivate and guide the
evaluation of automated repair quality and overhead, in
terms of their effect on program throughput and correctness,
measured by held-out test suites and indicative workloads.

6.2 Experimental Setup

We focus the repair quality experiments on three of our
benchmarks that consist of security vulnerabilities in long-
running servers: lighttpd, nullhttpd, and php. There
exist many mature intrusion-detection systems for security
vulnerabilities, providing a natural means of identifying
bugs to be repaired. Similarly, web servers are a compelling
starting point for closed-loop repair: They are common
attack targets, they are important services that run
continually, and they are event driven, making it easier to
isolate negative test cases. Note that for the php experi-
ments we repair the php interpreter used by an un-
changing, off-the-shelf apache webserver, in libphp.so.

LE GOUES ET AL.: GENPROG: A GENERIC METHOD FOR AUTOMATIC SOFTWARE REPAIR 65

Fig. 10. Closed-loop system outcomes (per request), as a function of anomaly detector and repair success. Cases 3 and 6 are new concerns.



Several experiments in this section use indicative work-
loads to measure program throughput pre, during, and
postrepair. We obtained workloads and content layouts
from the University of Virginia CS Department webserver.
To evaluate repairs to the nullhttpd and lighttpd

webservers, we used a workload of 138,226 HTTP requests
spanning 12,743 distinct client IP addresses over a 14-hour
period on 11 November 2008. To evaluate repairs to php,
we obtained the room and resource reservation system used
by the University of Virginia CS Department, which
features authentication, graphical animated date and time
selection, and a mysql back end. It totals 16,417 lines of
PHP, including 28 uses of str_replace (the subject of the
php repair), and is a fairly indicative three-tier web
application. We also obtained 12,375 requests to this system,
spanning all of 11 November 2008. Recall that the php

repair loses functionality; we use this workload to evaluate
the effect of such a repair. In all cases, a request was labeled
“successful” if the correct (bit-for-bit) data were returned to
the client before that client started a new request; success
requires both correct output and response time.

Our test machine contains 2 GB of RAM and a 2.4 GHz
dual-core CPU. To avoid masking repair cost, we uniformly
sped up the workloads until the server machine was at
100 percent utilization (and additional speedups resulted in
dropped packets). To remove network latency and band-
width considerations, we ran servers and clients on the
same machine.

We use two metrics to evaluate repair overhead and
quality. The first metric is the number of successful requests
a program processed before, during, and after a repair. To
evaluate repair time overhead, we assume a worst-case
scenario in which the same machine is used both for serving
requests and repairing the program and in which all
incoming requests are dropped (i.e., not buffered) during
the repair process. The second metric evaluates a program
on held-out fuzz testing; comparing behavior pre and
postrepair can suggest whether a repair has introduced new
errors, and whether the repair generalizes.

6.3 The Cost of Repair Time

We first measure the overhead of running GenProg itself by
measuring the number of requests from the indicative
workloads the unmodified programs successfully handle.

Next, we generated the repair, noting the requests lost
during the time taken to repair on the server machine. Fig. 11
summarizes the results. The “Requests Lost To Repair Time”
column shows the requests dropped during the repair as a
fraction of the total number of successful requests served by
the original program. To avoid skewing relative performance
by the size of the workload, the numbers have been
normalized to represent a single day containing a single
attack. Note that the absolute speed of the server is not
relevant here: A server machine that was twice as fast overall
would generate the repair in half the time, but would also
process requests twice as quickly. Fewer than 8 percent of
daily requests were lost while the system was offline for
repairs. Buffering requests, repairing on a separate machine,
or using techniques such as signature generation could
reduce this overhead.

6.4 Cost of a Repair that Degrades Functionality

The “Requests Lost to Repair Quality” column of Fig. 11
quantifies the effect of the generated repairs on program
throughput. This row shows the difference in the number of
requests that each benchmark could handle before and after
the repair, expressed as a percentage of total daily
throughput. The repairs for nullhttpd and lighttpd do
not noticeably affect their performance. Recall that the php
repair degrades functionality by disabling portions of the
str_replace function. The php row of Fig. 11 shows that
this low quality (loss of functionality) repair does not
strongly affect system performance. Given the low-quality
repair’s potential for harm, the low “Lost” percentage for
php is worth examining. Of the reservation application’s
28 uses of str_replace, 11 involve replacements of
multicharacter substrings, such as replacing “-” with “- -”
for strings placed in HTML comments. Our repair leaves
multicharacter substring behavior unchanged. Many of the
other uses of str_replace occur on rare paths. For
example, in

66 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

Fig. 11. Closed-loop repair system evaluation. Each row represents a different repair scenario and is separately normalized so that the prerepair
daily throughput is 100 percent. The nullhttpd and lighttpd rows show results for true repairs. The php row shows the results for a repair that
degrades functionality. The False Pos. rows show the effects of repairing three intrusion detection system false positives on nullhttpd. The
number after � indicates one standard deviation. “Lost to Repair Time” indicates the fraction of the daily workload lost while the server was offline
generating the repair. “Lost to Repair Quality” indicates the fraction of the daily workload lost after the repair was deployed. “Generic Fuzz Test
Failures” counts the number of held-out fuzz inputs failed before and after the repair. “Exploit Failures” measures the held-out fuzz exploit tests failed
before and after the repair.



str_replace is used to make a form label, but is only
invoked if another variable, element_label, is null.
Other uses replace, for example, underscores with spaces in
a form label field. Since the repair causes single-character
str_replace to perform no replacements, if there are no
underscores in the field, then the result remains correct.
Finally, a few of the remaining uses were for SQL
sanitization, such as replacing “,” with “‘,’”. However, the
application also uses mysql_real_escape_string, so it
remains safe from such attacks.

6.5 Repair Generality and Fuzzing

The experiments in the previous sections suggest that
GenProg repairs do not impair legitimate requests, an
important component of repair quality. Two additional
concerns remain. First, repairs must not introduce new
flaws or vulnerabilities, even when such behavior is not
tested by the input test cases. To this end, Microsoft
requires that security-critical changes be subject to 100,000
fuzz inputs [42] (i.e., randomly generated structured input
strings). Similarly, we used the SPIKE black-box fuzzer
from immunitysec.com to generate 100,000 held-out fuzz
requests using its built-in handling of the HTTP protocol.
The “Generic” column in Fig. 11 shows the results of
supplying these requests to each program. Each program
failed no additional tests postrepair: For example,
lighttpd failed the same 1,410 fuzz tests before and after
the repair. Second, a repair must do more than merely
memorize and reject the exact attack input: It must address
the underlying vulnerability. To evaluate whether the
repairs generalize, we used the fuzzer to generate 10 held-
out variants of each exploit input. The “Exploit” column
shows the results. For example, lighttpd was vulnerable
to nine of the variant exploits (plus the original exploit
attack), while the repaired version defeated all of them
(including the original). In no case did GenProg’s repairs
introduce any errors that were detected by 100,000 fuzz
tests, and in every case GenProg’s repairs defeated variant
attacks based on the same exploit, showing that the repairs
were not simply fragile memorizations of the input.

The issue of repair generality extends beyond the
security examples shown here. Note that because this
particular experiment only dealt with the repair of security
defects, fuzz testing was more applicable than it would be
in the general case. Establishing that a repair to a generic
software engineering error did not introduce new failures
or otherwise “overfit” could also be accomplished with
held-out test cases or cross validation.

6.6 Cost of Intrusion Detection False Positives

Finally, we examine the effect of IDS false positives when
used as a signal to GenProg. We trained the IDS on 534,109
requests from an independent data set [39]; this process
took 528 seconds on a machine with quad-core 2.8 GHz and
8 GB of RAM. The resulting system assigns a score to each
incoming request ranging from 0.0 (anomalous) to 1.0
(normal). However, the IDS perfectly discriminated be-
tween benign and exploitative requests in the testing
workloads (no false negatives or false positives), with a
threshold of 0.02. Therefore, to perform these experiments,
we randomly selected three of the lowest scoring normal

requests (closest to being incorrectly labeled anomalous)
and attempted to “repair” nullhttpd against them, using
the associated requests as input and a diff against the
baseline result for the negative test case; we call these
requests quasi-false positives (QFPs). The “False Pos.” rows
of Fig. 11 show the effect of time to repair and requests lost
to repair when repairing these QFPs.

QFP #1 is a malformed HTTP request that includes
quoted data before the GET:

The GenProg repair changed the error response beha-
vior so that the response header confusingly includes
HTTP/1.0 200 OK while the user-visible body retains the
correct 501 Not Implemented message, but with the
color-coding stripped. The header inclusion is ignored by
most clients; the second change affects the user-visible
error message. Neither causes the webserver to drop
additional legitimate requests, and Fig. 11 shows no
significant loss due to repair quality.

QFP #2 is a HEAD request; such requests are rarer than
GET requests and only return header information such as
last modification time. They are used by clients to
determine if a cached local copy suffices:

The repair changes the processing ofHEAD requests so that
the Cache-Control: no-store line is omitted from the
response. The no-store directive instructs the browser to
store a response only as long as it is necessary to display it. The
repair thus allows clients to cache pages longer than might be
desired. It is worth noting that the Expires: <date> also
included in the response header remains unchanged and
correctly set to the same value as the Date : <date> header
(also indicating that the page should not be cached), so a
conforming browser is unlikely to behave differently. Fig. 11
indicates negligible loss from repair quality.

QFP #3 is a relatively standard HTTP request:

GenProg fails to generate a repair within one run
(240 seconds) because it cannot generate a variant that is
successful at GET index.html (one of the positive test
cases) but fails the almost identical QFP #3 request. Since
no repair is deployed, there is no subsequent loss to
repair quality.

These experiments support the claim that GenProg
produces repairs that address the given errors and do
not compromise functionality. It appears that the time
taken to generate these repairs is reasonable and does not
unduly influence real-world program performance. Finally,
the experiments suggest that the danger from anomaly
detection false positives is lower than that of low-quality
repairs from inadequate test suites, but that both limita-
tions are manageable.

7 DISCUSSION, LIMITATIONS, AND THREATS

The experiments in Sections 5 and 6 suggest that GenProg
can repair several classes of errors in off-the-shelf C
programs efficiently. The experiments indicate that the
overhead of GenProg is low, the costs associated with false

LE GOUES ET AL.: GENPROG: A GENERIC METHOD FOR AUTOMATIC SOFTWARE REPAIR 67



positives and low-quality repairs are low, that the repairs
generalize without introducing new vulnerabilities, and
that the approach may be viable when applied to real
programs with real workloads, even when considering the
additional concerns presented by a closed-loop detection
and repair system. However, there are several limitations of
the current work.

Nondeterminism. GenProg relies on test cases to encode
both an error to repair and important functionality. Some
properties are difficult or impossible to encode using test
cases, such as nondeterministic properties; GenProg cannot
currently repair race conditions, for example. We note,
however, that many multithreaded programs, such as
nullhttpd, can already be repaired if the threads are
independent. This limitation could be mitigated by running
each test case multiple times, incorporating scheduler
constraints into the GP representation, and allowing a
repair to contain both code changes and scheduling
directives, or making multithreaded errors deterministic
[43]. There are certain other classes of properties, such as
liveness, fairness, and noninterference, that cannot be
disproved with a finite number of execution examples; it
is not clear how to test or patch noninterference information
flow properties using our system.

Test suites and repair quality. GenProg defines repair
acceptability according to whether the patched program
passes the input test suite. Consequently, the size and scope
of the test suite can directly impact the quality of the
produced patch, even when minimized to reduce unneces-
sary changes. Because the test cases don’t encode holistic
design choices, the repairs produced by GenProg are not
always the same as those produced by human developers.
Repeated automatic patching could potentially degrade
source code readability because, even though our patches
are small in practice, they sometimes differ from those
provided by human developers. Related research in
automatic change documentation may mitigate this concern
[44]. Repairs may reduce functionality if too few test cases
are used, and the utility of the closed-loop architecture in
particular requires that a test suite be sufficient to guard
against lost functionality or new vulnerabilities. However,
test cases are more readily available in practice than
specifications or code annotations, and existing test case
generation techniques [45] could be used to provide new
positive or negative test cases and a more robust final check
for patch validity. We found in Section 6 that several
security-critical patches are robust in the face of fuzzed
exploit inputs and do not appear to degrade functionality.
Additionally, the experiments in Section 6 suggest that even
repairs that reduce functionality do not produce prohibitive
effects in practice; these results corroborate the precedent in
previous work for this definition of repair “acceptability”
[14]. Ultimately, however, GenProg is not designed to
replace the human developer in the debugging pipeline, as
it is unable, in its current incarnation, to consider higher
level design goals or, in fact, any program behavior beyond
that observed on test cases.

Results in Section 5.3 show that GenProg running time is
dominated by fitness evaluations. Too many test cases may
thus impede running time. However, GenProg has been
shown to integrate well with test suite selection techniques

[35], permitting speedups of 80 percent while finding the
same repairs.

Fault localization. Fault localization is critical to the
success of GenProg; without weighting by fault localization,
our algorithm rarely succeeds (e.g., gcd fails 100 percent of
the time). GenProg scalability is predicated on accurate
fault localization using positive and negative test cases. In
the current implementation, which makes use of a simple
fault localization technique, GenProg scales well when the
positive and negative test cases visit different portions of
the program. In the case of security-related data-only
attacks, where good and bad paths may overlap completely,
the weighted path will not constrain the search space as
effectively, potentially preventing timely repairs. More
precise bug localization techniques [1] might mitigate this
problem, though fault localization in general remains a
difficult and unsolved problem. A related concern is
GenProg’s assumption that a repair can be adapted from
elsewhere in the same source code. This limitation could
potentially be addressed with a small library of repair
templates to augment the search space. In the case of a very
large code base, the randomized search process could be
overwhelmed by too many statements to select from. In
such cases, new methods could be developed for “fix
localization.” We leave further repair localization techni-
ques as an avenue of future work.

Intrusion detection. For the closed-loop system described
in Section 6.1, we used an intrusion detection system that
does not apply to all fault types and does not actually locate
the fault. We note that fault isolation by the IDS is not
necessary to integrate with our proposed architecture
because GenProg does its own fault isolation using existing
techniques. Although the success of our approach is limited
to faults that can be well-localized by lightweight techniques
(e.g., excluding data-only attacks), it also means that we do
not need to rely on an IDS that can pinpoint fault locations.
Instead, our proposed closed-loop system requires only a
monitoring system that can identify an input that leads to
faulty behavior—a significantly easier problem—and that
permits the construction of a negative test case (an input and
an oracle). We note that any limitations associated with
intrusion detection apply only to the closed-loop system
evaluation and not to GenProg in general.

Experimental validity. There exist several threats to the
validity of our results. Many of the parameters in the
implementation and experimental setup (e.g., Section 5.1)
were heuristically chosen based on empirical performance.
They may not represent the optimum set of parameter
values, representing a threat to construct validity (i.e., we
may not actually be measuring a well-tuned genetic
algorithm for this domain), although we note that they
appear to work well in practice.

Additionally, these parameters, as well as the patterns
seen in Figs. 7 and 11, might not generalize to other types of
defects or other programs, representing a threat to the
external validity of the results. The experiments focus
particularly on security-critical vulnerabilities in open-
source software, which may not be indicative of all
programs or errors found in industry. To mitigate this
threat, we attempted to select a variety of benchmarks and

68 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012



errors on which to evaluate GenProg. More recent publica-
tions on the subject of this technique have added several
additional benchmarks [35], [46]. We note that such bench-
marks are often difficult to find in practice: They require
sufficient public information to reproduce an error, access
to the relevant source code and revision number, and access
to the correct operating environment to enable the
reproduction of a given error. Investigating whether the
costs reported in Section 6 are similar for other application
domains (e.g., bind or openssl) and for other types of
errors (e.g., time-of-check to time-of-use or unicode parsing
problems) remains an area of future research.

8 RELATED WORK

There are several research areas broadly related to the work
presented in this paper: automatic bug detection/localization
and debugging, automatic error preemption/repair, auto-
matic patch generation, intrusion detection, genetic pro-
gramming, and search-based software engineering (SBSE).

Research advances in debugging include replay debug-
ging [47] and cooperative bug isolation [1]. Trace localization
[48], minimization [49], and explanation [50] projects also
aim to elucidate faults and ease repairs. These approaches
typically narrow down a large counterexample backtrace
(the error symptom) to a few lines (a potential cause).
However, a narrowed trace or small set of program lines is
not a concrete repair. Second, GenProg can theoretically
work on any detected fault, not just those found by static
analysis tools that produce counterexamples. Finally, these
algorithms are limited to the given trace and source code and
can thus never localize the “cause” of an error to a missing
statement; adding or swapping code to address a missing
statement is necessary for many of our repairs. This research
can be viewed as complementary to ours; a defect found by
static analysis might be repaired and explained automati-
cally, and both the repair and the explanation could be
presented to developers. However, a common thread in
debugging research is that, while information or flexibility is
presented to the developer, repairs for unannotated pro-
grams must be made manually.

One class of approaches to automatic error preemption
and repair uses source code instrumentation and runtime
monitoring to detect and prevent harmful effects from
particular types of errors. Demsky et al. [40] automatically
insert runtime monitoring code to detect if a data structure
ever violates a given formal consistency specification and
modify it back to a consistent state, allowing buggy
programs to continue to execute. Smirnov et al. [51], [52]
automatically compile C programs with integrated code for
detecting overflow attacks, creating trace logs containing
information about the exploit, and generating a correspond-
ing attack signature and software patch. DYBOC [15]
instruments vulnerable memory allocations such that over
or underflows trigger exceptions that are addressed by
specific handlers.

Other research efforts have focused more directly on
patch generation. In previous work, we developed an
automatic static algorithm for soundly repairing programs
with specifications [31]. Clearview [14] uses runtime
monitors to flag erroneous executions, and then identify

invariant violations characterizing the failure, generates
candidate patches that change program state or control flow
accordingly, and deploys and observes those candidates on
several program variants to select the best patch for
continued deployment. Selected transactional emulation
[53] executes potentially vulnerable functions in an emula-
tion environment, preventing them from damaging a
system using prespecified repair approaches; a more
accurate approach uses rescue points [54]. Sidiroglou and
Keromytis [16] proposed a system to counter worms by
using an intrusion detector to identify vulnerable code or
memory and preemptively enumerated repair templates to
automatically generate patches.

These and similar techniques have several drawbacks.
First, they require an a priori enumeration of vulnerability
types and possible repair approaches, either through the
use of formal specifications or the use of external runtime
monitors or predefined error and repair templates. In
practice, despite recent advances in specification mining
(e.g., [55], [56]), formal specifications are rarely available;
none of the programs presented in this paper are specified.
Moreover, specifications are limited in the types of errors
they can find and fix, and cannot repair multithreaded code
or violations of liveness properties (e.g., infinite loops).
Although some of the nonspecification-based techniques
are theoretically applicable to more than one type of
security vulnerability, typically, evaluations are limited to
buffer over and underflows. The exception to this rule,
Clearview, is shown to also address illegal control-flow
transfers, but is limited by the availability of external
monitors for any given vulnerability type. By contrast,
GenProg, designed to be generic, does not require formal
specifications or advanced knowledge of vulnerability types
and has successfully repaired eight classes of errors to date,
including buffer overruns.

Second, these techniques require either source code
instrumentation (Smirnov, Demsky), which increases
source code size (by 14 percent on Apache in DYBOC),
runtime monitoring (DYBOC, Clearview, Keromytis et al.,
StemSead), or virtual execution (Clearview, selected trans-
actional emulation), imposing substantial runtime overhead
(20 percent for DYBOC, up to 150 percent for Smirnov,
73 percent on Apache for StemSead, 47 percent on Firefox
for Clearview, and, in general, at least the runtime cost of
the chosen monitors). GenProg does not impose preemptive
performance or size costs, and minimizes patches as much
as possible, though, in theory, generated patches can be of
arbitrary size. Our patches are also much more localized
than a system that requires system-wide instrumentation
and are easily inspected by a human.

Third, these approaches do not evaluate generated
repairs for quality or repaired programs for loss of
functionality (the Clearview authors note that a manual
inspection of their repaired program suggests that function-
ality is not dramatically impaired). Similarly, they do not
evaluate the effect of runtime monitor false positives. While
we cannot guarantee correctness, GenProg explicitly en-
codes testing a patch for correctness with its use of
regression tests in fitness evaluation. GenProg produces
patches with low overhead in terms of repair time and
quality; we have explicitly evaluated the effect of IDS false

LE GOUES ET AL.: GENPROG: A GENERIC METHOD FOR AUTOMATIC SOFTWARE REPAIR 69



positives on system performance and used standard
methods to show that they are general.

In 2008, a method for automatically generating exploits
from program patches was described [57], generating
concern that the method could be used by attackers.
Although there are questions about the validity of this
threat, it is worth noting that there is no need in our system
to distribute a patch. A negative test case can be distributed
as a self-certifying alert [58], and individual systems can
generate their own repairs.

There is a large literature on intrusion detection for web
servers, including anomaly-based methods (e.g., [59]). In
principle, many of those techniques, such as those of
Kruegel and Vigna [60], Tombini et al. [61], and Wang and
Stolfo [62], could be incorporated directly into our proposed
closed-loop repair system. Non-webserver programs would
require other types of anomaly detection, such as methods
that track other layers of the network stack or that monitor
system calls or library calls. Other approaches, such as
instruction-set randomization [63] or specification mining
[64], could also report anomalies for repair. In each of these
systems, however, false positives remain a concern.
Although Section 6.6 provides evidence that false positives
can be managed, a fielded system could incorporate
multiple independent signals, initiating a repair only when
they agree. Finally, false positives might be reduced by
intelligently retraining the anomaly detector after the patch
has been applied [65].

Arcuri et al. [20], [66] proposed the idea of using GP to
automate the co-evolution of repairs to software errors and
unit test cases, demonstrating the idea on a hand-coded
example of the bubble sort algorithm. The details of our
approach are quite different from Arcuri et al.’s proposal,
allowing us to demonstrate practical repairs on a wide
variety of legacy programs. Important differences include:
We leverage several representation choices to permit the
repair of real programs with real bugs, we minimize our
high-fitness solution after the evolutionary search has
finished instead of controlling “code bloat” along the way,
we use execution paths to localize evolutionary search
operators, and we do not rely on a formal specifications for
fitness evaluation. Several aspects of Arcuri et al.’s work
could augment our approach, such as using co-evolutionary
techniques to generate or select test cases. However, his
work relies on formal specifications, which limits both the
programs to which it may apply and its scalability. Orlov
and Sipper have experimented with evolving Java bytecode
[67], using specially designed operators to modify the code.
However, our work is the first to report substantial
experimental results on real programs with real bugs.
Recently, Debroy and Wong have independently validated
that mutations targeted to statements likely to contain faults
can affect repairs without human intervention [68].

The field of Search-Based Software Engineering [69] uses
evolutionary and related methods for software testing, e.g.,
to develop test suites [70], [71], [72]. SBSE also uses
evolutionary methods to improve software project manage-
ment and effort estimation [73], to find safety violations
[74], and in some cases to refactor or reengineer large
software bases [75]. In SBSE, most innovations in the GP
technique involve new kinds of fitness functions, and there
has been less emphasis on novel representations and
operators, such as those we explored in this paper.

9 CONCLUSIONS

This paper presents GenProg, a technique that uses
genetic programming to evolve a version of a program
that retains required functionality while avoiding a
particular error. We limit the GP search space by
restricting attention to statements, focusing genetic opera-
tions along a weighted path that takes advantage of test
case coverage information, and reusing existing program
statements. We use tree-structured differencing techniques
and delta-debugging to manage GP-generated dead code
and produce a 1-minimal repair. We validate repairs in
terms of an input set of test cases.

We used GenProg to repair 16 programs totaling over
1.25 million lines of code and encompassing eight different
errors types in 120K lines of program or module code, in
357 seconds, on average; the technique shows encouraging
scaling behavior. We evaluated the quality of the generated
repairs in the context of a proof-of-concept closed-loop repair
system and showed that, for our case-study benchmarks,
time lost to the repair process and requests lost to repair
quality are both manageable, and in some cases negligible.
We showed that IDS false positives similarly represent a
manageable threat. Finally, we evaluated our repaired
programs on held out test cases, fuzzed inputs, and variants
of the original defect, finding that the repairs do not appear to
introduce new vulnerabilities, nor do they leave the program
susceptible to variants of the original exploit.

We credit much of the success of this technique to design
decisions that limit the search space, traditionally a serious
difficulty in applying GP to real-world programs. We
believe that our success in evolving automatic repairs may
say as much about the state of today’s software as it says
about the efficacy of our method. In modern environments,
it is exceedingly difficult to understand an entire software
package, test it adequately, or localize the source of an error.
In this context, it should not be surprising that human
programming often has a large trial and error component,
and that many bugs can be repaired by copying code from
another location and pasting it in to another, an approach
that is not so different from the one described here.

In the short term, GenProg may provide utility as a
debugging aid [31] or by temporarily addressing bugs that
would otherwise take days to patch or require detrimental
temporary solutions, a use-case we explored in our closed-
loop repair prototype. In the long term, the technique we
have described leaves substantial room for future inves-
tigation into the repair of new types of bugs and
programs and the effects of automatic repair on program
readability, maintainability, and quality. While we remain
far from realizing the long-term dream of “automatic
programming”—a vision dating back to earliest days of
computing—we hope that automatic repair may provide a
first step toward the automation of many aspects of the
software development process.

ACKNOWLEDGMENTS

The authors thank David E. Evans, Mark Harman, John C.
Knight, Anh Nguyen-Tuong, and Martin Rinard for
insightful discussions. Stephanie Forrest and Westley
Weimer gratefully acknowledge the support of the US
National Science Foundation (grant CCF-0905236), US Air

70 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012



Force Office of Scientific Research grant FA8750-11-2-0039
and MURI grant FA9550-07-1-0532, and US Defense

Advanced Research Projects Agency (DARPA) grant
FA8650-10-C-7089. Stephanie Forrest acknowledges the
partial support of CCF-0621900 and CCR-0331580; Westley

Weimer acknowledges the partial support of CCF-0954024
and CNS-0716478.

REFERENCES

[1] B. Liblit, A. Aiken, A.X. Zheng, and M.I. Jordan, “Bug Isolation via
Remote Program Sampling,” Proc. ACM SIGPLAN Conf. Program-
ming Language Design and Implementation, pp. 141-154, 2003.

[2] J. Anvik, L. Hiew, and G.C. Murphy, “Coping with an Open Bug
Repository,” Proc. OOPSLA Workshop Eclipse Technology eXchange,
pp. 35-39, 2005.

[3] L. Erlikh, “Leveraging Legacy System Dollars for E-Business,”
IT Professional, vol. 2, no. 3, pp. 17-23, 2000.

[4] C.V. Ramamoothy and W.-T. Tsai, “Advances in Software
Engineering,” Computer, vol. 29, no. 10, pp. 47-58, Oct. 1996.

[5] R.C. Seacord, D. Plakosh, and G.A. Lewis, Modernizing Legacy
Systems: Software Technologies, Engineering Process and Business
Practices. Addison-Wesley Longman Publishing Co., Inc., 2003.

[6] M. Jorgensen and M. Shepperd, “A Systematic Review of Software
Development Cost Estimation Studies,” IEEE Trans. Software Eng.,
vol. 33, no. 1, pp. 33-53, Jan. 2007.

[7] J. Sutherland, “Business Objects in Corporate Information
Systems,” ACM Computing Surveys, vol. 27, no. 2, pp. 274-276,
1995.

[8] D.E. Denning, “An Intrusion-Detection Model,” IEEE Trans.
Software Eng., vol. 13, no. 2, pp. 222-232, Feb. 1987.

[9] T. Ball and S.K. Rajamani, “Automatically Validating Temporal
Safety Properties of Interfaces,” Proc. SPIN Workshop Model
Checking of Software, pp. 103-122, May 2001.

[10] D. Hovemeyer and W. Pugh, “Finding Bugs Is Easy,” Proc. 19th
Ann. ACM SIGPLAN Conf. Object-Oriented Programming Systems,
Languages, and Applications Companion, pp. 132-136, 2004.

[11] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J.
Knight, A. Nguyen-Tuong, and J. Hiser, “N-Variant Systems: A
Secretless Framework for Security through Diversity,” Proc.
USENIX Security Symp., 2006.

[12] S. Forrest, A. Somayaji, and D.H. Ackley, “Building Diverse
Computer Systems,” Proc. Sixth Workshop Hot Topics in Operating
Systems, 1998.

[13] J. Anvik, L. Hiew, and G.C. Murphy, “Who Should Fix This Bug?”
Proc. Int’l Conf. Software Eng., pp. 361-370, 2006.

[14] J.H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M.
Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F.
Wong, Y. Zibin, M.D. Ernst, and M. Rinard, “Automatically
Patching Errors in Deployed Software,” Proc. ACM Symp.
Operating Systems Principles, pp. 87-102, Oct. 2009.

[15] S. Sidiroglou, G. Giovanidis, and A.D. Keromytis, “A Dynamic
Mechanism for Recovering from Buffer Overflow Attacks,” Proc.
Eighth Information Security Conf., pp. 1-15, 2005.

[16] S. Sidiroglou and A.D. Keromytis, “Countering Network Worms
through Automatic Patch Generation,” IEEE Security and Privacy,
vol. 3, no. 6, pp. 41-49, Nov./Dec. 2005.

[17] S. Forrest, “Genetic Algorithms: Principles of Natural Selection
Applied to Computation,” Science, vol. 261, pp. 872-878, Aug.
1993.

[18] J.R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[19] “36 Human-Competitive Results Produced by Genetic Pro-
gramming,” http://www.genetic-programming.com/
humancompetitive.html, downloaded Aug. 2008.

[20] A. Arcuri, D.R. White, J. Clark, and X. Yao, “Multi-Objective
Improvement of Software Using Co-Evolution and Smart Seed-
ing,” Proc. Int’l Conf. Simulated Evolution and Learning, pp. 61-70,
2008.

[21] S. Gustafson, A. Ekart, E. Burke, and G. Kendall, “Problem
Difficulty and Code Growth in Genetic Programming,” Genetic
Programming and Evolvable Machines, vol. 5, pp. 271-290, Sept. 2004.

[22] D.R. Engler, D.Y. Chen, and A. Chou, “Bugs as Inconsistent
Behavior: A General Approach to Inferring Errors in Systems
Code,” Proc. Symp. Operating Systems Principles, pp. 57-72, 2001.

[23] R. Al-Ekram, A. Adma, and O. Baysal, “DiffX: an Algorithm to
Detect Changes in Multi-Version XML Documents,” Proc. Conf.
Centre for Advanced Studies on Collaborative Research, pp. 1-11, 2005.

[24] A. Zeller, “Yesterday, My Program Worked. Today, It Does Not.
Why?” Proc. Seventh ACM SIGSOFT Symp. Foundations of Software
Eng., pp. 253-267, 1999.

[25] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Auto-
matically Finding Patches Using Genetic Programming,” Proc.
Int’l Conf. Software Eng., pp. 364-367, 2009.

[26] S. Forrest, W. Weimer, T. Nguyen, and C. Le Goues, “A Genetic
Programming Approach to Automated Software Repair,” Proc.
Genetic and Evolutionary Computing Conf., 2009.

[27] W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen, “Automatic
Program Repair with Evolutionary Computation,” Comm. ACM,
vol. 53, no. 5, pp. 109-116, May 2010.

[28] G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer, “Cil: An
Infrastructure for C Program Analysis and Transformation,” Proc.
Int’l Conf. Compiler Construction, pp. 213-228, Apr. 2002.

[29] A. Eiben and J. Smith, Introduction to Evolutionary Computing.
Springer, 2003.

[30] B.L. Miller and D.E. Goldberg, “Genetic Algorithms, Selection
Schemes, and the Varying Effects of Noise,” Evolutionary
Computation, vol. 4, no. 2, pp. 113-131, 1996.

[31] W. Weimer, “Patches as Better Bug Reports,” Proc. Conf. Generative
Programming and Component Eng., pp. 181-190, 2006.

[32] A. Zeller and R. Hildebrandt, “Simplifying and Isolating Failure-
Inducing Input,” IEEE Trans. Software Eng., vol. 28, no. 2, pp. 183-
200, Feb. 2002.

[33] BBC News, “Microsoft Zune Affected by ‘Bug’,” http://news.
bbc.co.uk/2/hi/technology/7806683.stm, Dec. 2008.

[34] B.P. Miller, L. Fredriksen, and B. So, “An Empirical Study of the
Reliability of UNIX Utilities,” Comm. ACM, vol. 33, no. 12, pp. 32-
44, 1990.

[35] E. Fast, C. Le Goues, S. Forrest, and W. Weimer, “Designing Better
Fitness Functions for Automated Program Repair,” Proc. Genetic
and Evolutionary Computing Conf., 2010.

[36] T. Jones and S. Forrest, “Fitness Distance Correlation as a Measure
of Problem Difficulty for Genetic Algorithms,” Proc. Sixth Int’l
Conf. Genetic Algorithms, pp. 184-192, 1995.

[37] Symantec, “Internet Security Threat Report,” http://eval.
symantec.com/mktginfo/enterprise/white_papers/ent-
whitepaper_symantec_internet_security_threat_report_x_09_
2006.en-us.pdf, Sept. 2006.

[38] W. Cui, V. Paxson, N. Weaver, and R.H. Katz, “Protocol-
Independent Adaptive Replay of Application Dialog,” Proc.
Network and Distributed System Security Symp., 2006.

[39] K.L. Ingham, A. Somayaji, J. Burge, and S. Forrest, “Learning DFA
Representations of http for Protecting Web Applications,”
Computer Networks, vol. 51, no. 5, pp. 1239-1255, 2007.

[40] B. Demsky, M.D. Ernst, P.J. Guo, S. McCamant, J.H. Perkins, and
M. Rinard, “Inference and Enforcement of Data Structure
Consistency Specifications,” Proc. Int’l Symp. Software Testing and
Analysis, pp. 233-244, 2006.

[41] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically
Generating Signatures for Polymorphic Worms,” Proc. IEEE Symp.
Security and Privacy, pp. 226-241, 2005.

[42] M. Howard and S. Lipner, The Security Development Lifecycle.
Microsoft Press, 2006.

[43] M. Musuvathi and S. Qadeer, “Iterative Context Bounding for
Systematic Testing of Multithreaded Programs,” Proc. Program-
ming Language Design and Implementation Conf., pp. 446-455,
2007.

[44] R.P. Buse and W.R. Weimer, “Automatically Documenting
Program Changes,” Proc. Int’l Conf. Automated Software Eng.,
pp. 33-42, 2010.

[45] K. Sen, “Concolic Testing,” Proc. IEEE/ACM 22nd Int’l Conf.
Automated Software Eng., pp. 571-572, 2007.

[46] E. Schulte, S. Forrest, and W. Weimer, “Automated Program
Repair through the Evolution of Assembly Code,” Proc. IEEE/
ACM Int’l Conf. Automated Software Eng., 2010.

[47] L. Albertsson and P.S. Magnusson, “Using Complete System
Simulation for Temporal Debugging of General Purpose Operat-
ing Systems and Workload,” Proc. Int’l Symp. Modeling, Analysis
and Simulation of Computer and Telecomm. Systems, pp. 191-198,
2000.

LE GOUES ET AL.: GENPROG: A GENERIC METHOD FOR AUTOMATIC SOFTWARE REPAIR 71



[48] T. Ball, M. Naik, and S.K. Rajamani, “From Symptom to Cause:
Localizing Errors in Counterexample Traces,” SIGPLAN Notices,
vol. 38, no. 1, pp. 97-105, 2003.

[49] A. Groce and D. Kroening, “Making the Most of BMC Counter-
examples,” Electronic Notes in Theoretical Computer Science, vol. 119,
no. 2, pp. 67-81, 2005.

[50] S. Chaki, A. Groce, and O. Strichman, “Explaining Abstract
Counterexamples,” Proc. Int’l Symp. Foundations of Software Eng.,
pp. 73-82, 2004.

[51] A. Smirnov and T.-C. Chiueh, “Dira: Automatic Detection,
Identification and Repair of Control-Hijacking Attacks,” Proc.
Network and Distributed System Security Symp., 2005.

[52] A. Smirnov, R. Lin, and T.-C. Chiueh, “Pasan: Automatic
Patch and Signature Generation for Buffer Overflow Attacks,”
Proc. Eighth Int’l Symp. Systems and Information Security, 2006.

[53] M.E. Locasto, A. Stavrou, G.F. Cretu, and A.D. Keromytis, “From
Stem to Sead: Speculative Execution for Automated Defense,”
Proc. USENIX Ann. Technical Conf., pp. 1-14, 2007.

[54] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A.D.
Keromytis, “Assure: Automatic Software Self-Healing Using
Rescue Points,” Proc. 14th Int’l Conf. Architectural Support for
Programming Languages and Operating Systems, pp. 37-48, 2009.

[55] C. Le Goues and W. Weimer, “Specification Mining with Few
False Positives,” Proc. 15th Int’l Conf. Tools and Algorithms for the
Construction and Analysis of Systems, pp. 292-306, 2009.

[56] B. Livshits, A. Nori, S. Rajamani, and A. Banerjee, “Merlin:
Specification Inference for Explicit Information Flow Problems,”
Proc. Programming Language Design and Implementation Conf.,
pp. 75-86, 2009.

[57] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic
Patch-Based Exploit Generation Is Possible: Techniques and
Implications,” Proc. IEEE Symp. Security and Privacy, pp. 143-157,
2008.

[58] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang,
and P. Barham, “Vigilante: End-to-End Containment of Internet
Worm Epidemics,” ACM Trans. Computing Systems, vol. 26, no. 4,
pp. 1-68, 2008.

[59] Recent Advances in Intrusion Detection, R. Lippmann, E. Kirda, and
A. Trachtenberg, eds. Springer 2008.

[60] C. Kruegel and G. Vigna, “Anomaly Detection of Web-Based
Attacks,” Proc. 10th ACM Conf. Computer and Comm. Security,
pp. 251-261, 2003.

[61] E. Tombini, H. Debar, L. Mé, and M. Ducassé, “A Serial
Combination of Anomaly and Misuse IDSes Applied to http
Traffic,” Proc. 20th Ann. Computer Security Applications Conf., 2004.

[62] K. Wang and S.J. Stolfo, “Anomalous Payload-Based Network
Intrusion Detection,” Proc. Seventh Int’l Symp. Recent Advances in
Intrusion Detection, pp. 203-222, 2004.

[63] W. Hu, J. Hiser, D. Williams, A. Filipi, J.W. Davidson, D. Evans,
J.C. Knight, A. Nguyen-Tuong, and J.C. Rowanhill, “Secure and
Practical Defense against Code-Injection Attacks Using Software
Dynamic Translation,” Proc. Second Int’l Conf. Virtual Execution
Environments, pp. 2-12, 2006.

[64] J. Whaley, M.C. Martin, and M.S. Lam, “Automatic Extraction of
Object-Oriented Component Interfaces,” Proc. Int’l Symp. Software
Testing and Analysis, pp. 218-228, 2002.

[65] M.E. Locasto, G.F. Cretu, S. Hershkop, and A. Stavrou, “Post-
Patch Retraining for Host-Based Anomaly Detection,” Technical
Report CUCS-035-07, Columbia Univ., Oct. 2007.

[66] A. Arcuri and X. Yao, “A Novel Co-Evolutionary Approach to
Automatic Software Bug Fixing,” Proc. IEEE Congress Evolutionary
Computation, 2008.

[67] M. Orlov and M. Sipper, “Genetic Programming in the Wild:
Evolving Unrestricted Bytecode,” Proc. Genetic and Evolutionary
Computation Conf., pp. 1043-1050, 2009.

[68] V. Debroy and W.E. Wong, “Using Mutation to Automatically
Suggest Fixes for Faulty Programs,” Proc. Int’l Conf. Software
Testing, Verification, and Validation, pp. 65-74, 2010.

[69] M. Harman, “The Current State and Future of Search Based
Software Engineering,” Proc. Int’l Conf. Software Eng., pp. 342-357,
2007.

[70] K. Walcott, M. Soffa, G. Kapfhammer, and R. Roos, “Time-Aware
Test Suitec Prioritization,” Proc. Int’l Symp. Software Testing and
Analysis, 2006.

[71] S. Wappler and J. Wegener, “Evolutionary Unit Testing of Object-
Oriented Software Using Strongly-Typed Genetic Programming,”
Proc. Conf. Genetic and Evolutionary Computation, pp. 1925-1932,
2006.

[72] C.C. Michael, G. McGraw, and M.A. Schatz, “Generating Software
Test Data by Evolution,” IEEE Trans. Software Eng., vol. 27, no. 12,
pp. 1085-1110, Dec. 2001.

[73] A. Barreto, M.D.O. Barros, and C.M. Werner, “Staffing a Software
Project: A Constraint Satisfaction and Optimization-Based Ap-
proach,” Computers and Operations Research, vol. 35, no. 10,
pp. 3073-3089, 2008.

[74] E. Alba and F. Chicano, “Finding Safety Errors with ACO,” Proc.
Conf. Genetic and Evolutionary Computation, pp. 1066-1073, 2007.

[75] O. Seng, J. Stammel, and D. Burkhart, “Search-Based Determina-
tion of Refactorings for Improving the Class Structure of Object-
Oriented Systems,” Proc. Conf. Genetic and Evolutionary Computa-
tion, pp. 1909-1916, 2006.

Claire Le Goues received the BA degree in
computer science from Harvard University and
the MS degree from the University of Virginia,
where she is currently a graduate student. Her
main research interests lie in combining static
and dynamic analyses to prevent, locate, and
repair errors in programs.

ThanhVu Nguyen received the BS and MS
degrees in computer science from the Pennsyl-
vania State University and is currently a gradu-
ate student at the University of New Mexico. His
current research interests include using static
and dynamic analyses to verify programs.

Stephanie Forrest received the BA degree from
St. John’s College and the MS and PhD degrees
from the University Michigan. She is currently a
professor of computer science at the University
of New Mexico and a member of the External
Faculty of the Santa Fe Institute. Her research
studies complex adaptive systems, including
immunology, evolutionary computation, biologi-
cal modeling, and computer security. She is a
senior member of the IEEE and a member of the

IEEE Computer Society.

Westley Weimer received the BA degree in
computer science and mathematics from Cornell
University and the MS and PhD degrees from
the University of California, Berkeley. He is
currently an associate professor at the Univer-
sity of Virginia. His main research interests
include static and dynamic analyses to improve
software quality and fix defects.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

72 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012


