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Abstract—Search-based automatic program repair has shown
promise in reducing the cost of defects in real-world software.
However, to date, such techniques have typically been most
successful when constructing short or single-edit repairs. This
is true even when techniques make use of heuristic search
strategies, like genetic programming, that in principle support
the construction of patches of arbitrary length. One key reason
is that the fitness function traditionally depends entirely on test
cases, which are poor at identifying partially correct solutions
and lead to a fitness landscape with many plateaus. We propose
a novel fitness function that optimizes for both functionality
and semantic diversity, characterized using learned invariants
over intermediate behavior. Our early results show that this new
approach improves semantic diversity and fitness granularity, but
does not statistically significantly improve repair performance.

Index Terms—genetic programming, automated program re-
pair, program semantics, invariant analysis, fitness function

I. INTRODUCTION

Research in automated program repair aims to reduce the
significant cost of buggy software in terms of both societal
impact [1] and developer effort [2]. Most modern repair
techniques take, as input, source code and a test suite, and
seek a patch that leads all input tests to pass, including tests
that initially fail. One dominant class of repair approaches
relies on heuristic search strategies like random search [3], a
deterministic heuristic walk of the search repair space [4]–[6],
or genetic programming [7], [8]. These techniques are promis-
ing in their application to both historical bugs in real-world
programs as well as, more recently, industrial settings [9].
However, to date, most techniques are limited to finding single-
edit repairs. For some techniques, this is by design [3], [4], [8],
and avoids the challenges of traversing a combinatorial multi-
edit search space. However, even techniques like GenProg,
which can in principle construct multi-edit repairs, still often
produce patches that reduce to single edits [10]. This inability
to construct multi-edit repairs limits the scope of such repair
techniques to simpler, single-line bugs.

One major factor that limits the ability of genetic program-
ming to evolve multi-edit bug repairs is a fitness function that
relies on test cases. Ideally, a candidate patch that contains

a partial solution — such as one of several required edits —
would cause the program to pass more test cases than one that
contains no useful edits. The test-based fitness function could
then usefully identify partial solutions, which could then be
selected and recombined for evolution towards a full solution.
Unfortunately, this does not typically hold in practice. Instead,
test case-based fitness functions often assign the same fitness
score to many different candidate solutions, producing large
fitness plateaus [11], [12]. An insufficiently granular fitness
function that fails to distinguish between distinct candidate
solutions prevents the search from identifying promising edits,
and instead simply prevents the introduction of destructive
edits that cause test failures [13]. Moreover, tests inherently
lack information about intermediate program behavior. They
are therefore poorly suited to guiding a search towards seman-
tically diverse mechanisms to accomplishing the same repair,
a possibly fruitful application for program repair [14].

We seek to overcome these limitations by providing addi-
tional information about program semantics to help the genetic
programming search strategy distinguish between promising
candidate patches. One potential source of additional infor-
mation is likely program invariants over program values,
like x == 0 or y > a. There exist mature dynamic invariant
detection tools, such as Daikon [15], that infer likely invariants
observed as holding over multiple program executions.

We propose to infer a set of likely invariants by observing
the original program behavior on its initially passing test
cases, which demonstrate good behavior. We then evaluate
the behavior of the program as modified by candidate patch
solutions on those inferred invariants. We use this observed
behavior over the population of candidate patches to determine
which patch variants appear to be more semantically diverse.
We then use semantic diversity as an optimization objective,
along with the number of passing test cases, to determine
variant fitness.

Beyond the potential utility of a technique that can find
diverse solutions to a program repair problem, diversity among
variants in a genetic programming population discourages
genetic drift and premature convergence towards local op-



tima [16]. By injecting semantic diversity, we hope that
our new fitness function can more effectively rank candidate
patches that would otherwise appear identical to a purely
test case-based fitness function, leading to higher fitness gran-
ularity. Our goal is a repair search strategy with fewer fitness
plateaus and can generate semantic diversity in its population
of candidate solutions. Our technique is designed to be more
general than previous attempts to either examine memory
values [12], or to use program predicates [17] to characterize
repair fitness, and further does not require training data.

This paper’s main contributions are:
• A new repair technique that uses learned program invari-

ants to promote semantic diversity of variant programs.
• A compact, invariant-based representation of program se-

mantics. Our representation facilitates an approximation
of the semantic difference between programs.

• An evaluation of an implementation of our technique’s
performance across sampled IntroClassJava [18] bugs.

• An evaluation of our technique’s scalability to De-
fects4j [19], a set of larger, real-world buggy programs.

The rest of this paper proceeds as follows. Section II
outlines background helpful to understanding our approach.
We motivate the approach with an illustrative example in
Section III and then describe the approach in Section IV.
Section V describes our evaluation on both large and small
programs, showing our technique’s potential to reduce fitness
plateaus and increase population diversity. We describe threats
to the validity of our experiments and possible limitations of
our approach in Section VI. Section VII puts our work in
context with respect to the prior literature; we conclude with
a discussion and vision for future directions in Section VIII.

II. BACKGROUND

This section provides background helpful to understanding
our technique and contributions.

a) Automatic Program Repair (APR): Given a program
and an oracle that determines its correctness, an Automatic
Program Repair technique attempts to find a patch that mod-
ifies the program in a way the oracle deems correct. The
majority of modern repair techniques use test cases as an
oracle, as a widely available but incomplete proxy for formal
correctness specifications. Test cases that fail on the original
program (negative tests) expose the bug to be repaired; test
cases that pass on the original program (positive tests) indicate
desirable behavior that should be maintained. Thus, the goal
of APR is to find a patch such that all provided tests pass on
the modified program. We describe the previous alternatives
to this approach in Section VII. Repair techniques typically
also use the test cases to perform fault localization (generally
using an off-the-shelf technique [20]), constraining the search
to a smaller set of candidate repair locations.

Two dominant approaches to APR are semantics-based and
heuristic or search-based. Semantics-based tools [21]–[23]
seek to synthesize a repair by deducing intended program se-
mantics. Heuristic or search-based approaches explore search
spaces of templated repairs applied to the abstract syntax tree

of the program. Heuristic techniques [4]–[6] use predefined
schemas and probabilistic models or other heuristics to apply
candidate changes. We focus in this work on search-based
techniques like GenProg [7] and RSRepair [3] that explicitly
use stochastic techniques to traverse the search space.

Techniques in both classes have been successfully applied
to real-world programs. However, they vary in the type of
code they can handle and the types of patches they can
create. Semantics-based approaches are often restricted by
their underlying reasoning to synthesizing new conditionals or,
less commonly, the right-hand side of assignments. Search-
based techniques can provide a broader set of syntactic re-
pair templates, but must still be restricted in the type and
variety that they explore, or the search becomes intractable.
Additionally, many techniques are expressly limited to single-
edit repairs. Even techniques (like GenProg, Angelix, or S3)
that can in principle construct multi-edit repairs rarely do, and
seemingly multi-edit patches often reduce to a single edit [10].

b) GenProg: GenProg [7] is a search-based APR tool
that uses genetic programming [24] to traverse the space of
possible patches. Patches consist of a variable-length sequence
of statement-level edits to the original program (typically
deletion, replacement, or insertion). Edits requiring new code
(insertion or replacement) restrict the domain of new code
to elsewhere in the same buggy program. New patches are
created via recombination (using crossover) and mutation (by
appending a new randomly-instantiated edit to an existing
patch candidate). Intermediate solutions are selected to con-
tinue evolution to subsequent generations, typically with a
selection scheme weighted by variant fitness, or suitability.
Like most other repair techniques, GenProg optimizes for
patched program performance on the input test cases, with
a fitness function comprised of a weighted sum of the number
of positive and negative tests that a modified program passes.
Empirically, however, this fitness function lacks granularity
and often fails to precisely distinguish between partial solu-
tions [11], [12], [17]. GenProg was initially implemented to
repair C programs, but has been reimplemented for Java.1

c) Automatic Learning of Likely Program Invariants:
There are tools that automatically infer likely program in-
variants, or predicates that describe program behavior. Such
techniques have been used to characterize either normal
or abnormal program executions, useful in applications like
specification mining [15], N-variant systems [25], and fault
localization [26]. We use Daikon [15], a mature dynamic
analysis technique that infers likely program invariants by
running the program on a provided set of inputs or tests,
observing intermediate values of the program, and matching
those values to template predicates to report properties holding
true over all observed executions. Daikon’s released toolset2

works on a variety of languages, including Java. We discuss
Daikon’s limitations in Section VI.



1 public int gcd(int a, int b) {
2 int result = 1;
3 if (a == 0) {
4 b = b - a;
5 } else {
6 result=a;
7 while (b != 0) {
8 result = b;
9 if (a > b) {
10 a = a - b;
11 } else {
12 b = b - a;
13 }
14 }
15 }
16 result=a;
17 return result;
18 }

Fig. 1: A buggy implementation of Euclid’s GCD algorithm.
This function is incorrect when a = 0 (returns 0, not b).

III. MOTIVATING EXAMPLE

We begin with a short example to motivate our proposed
approach. Consider the Java function implementing Euclid’s
GCD algorithm shown in Figure 1. This code contains a two-
part bug: when a = 0, it will return 0 instead of b (the correct
answer); when b = 0 and a > 0, it will return a (instead
of 0). A simple patch for this bug requires two changes:
deletion of line 16, and a replacement of line 4 with line 8 (or
appending line 8 before or after line 4). Note that GenProg
can in principle construct this patch using statement-level
modifications: GenProg’s mutation operators can for example
delete all of line 16 in Figure 1, or replace the statement at line
4 with the one at line 8 (but could not modify the expression
in any of the if conditions on lines 3 or 9).

Although test cases usefully characterize program behavior,
they typically do not offer information on partial program
correctness. More importantly, two very different programs
can easily pass the same number of test cases. For example, a
candidate patch that simply deletes line 16 would result in a
program that passes the same tests as the original buggy code.
However, this deletion is one of the two required edits. Ideally,
the fitness function would rank it above the empty patch.

Program invariants offer additional semantic information
that could distinguish between such patches. Programs that
display different behavior with respect to a set of invariants
may be interestingly different from one another in terms of
intermediate program semantics. For example, given a small
set of positive test cases, Daikon can infer likely invariants
such as a % gcd(a,b)= 0 and b % gcd(a,b)= 0 . These
invariants describe important properties of the gcd function.

Note that the buggy code in Figure 1 violates these proper-
ties on an initially failing test where a = 0. On the other hand,

1https://github.com/squaresLab/genprog4java
2https://plse.cs.washington.edu/daikon/
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Fig. 2: A flow-chart of our approach: White boxes and solid
lines show GenProg’s architecture, grey boxes and dotted lines
are our approach’s additions.

the candidate patch that deletes line 16 produces a program
that correctly preserves those invariants. This suggests that the
change may be worth maintaining in the search.

Note that we do not know a priori which possible properties
are most important, and Daikon can produce noisy output with
trivial or overfitting properties. Fortunately, genetic program-
ming [27], [28] is robust to noisy fitness functions. Thus, we
propose in this initial work to use inferred likely invariants as
one component of a genetic programming-based repair search
to promote diversity and reduce fitness plateaus.

IV. APPROACH

In this section, we describe our new genetic programming-
based repair technique that optimizes for both functional-
ity (measured using test cases) and semantic diversity. We
measure diversity by using inferred program invariants to
characterize modified program (and thus candidate patch)
behavior. We call this its invariant profile (Section IV-A). We
then quantify a candidate patch’s diversity by comparing its
invariant profile to the rest of the patches in the search pop-
ulation (Section IV-B). We use this invariant-based diversity
score, along with the number of positive and negative test
cases passed, as optimization objectives in the multi-objective
genetic algorithm NSGA-II [29] (Section IV-C).

Figure 2 shows the high-level architecture of our approach.
We add the following to GenProg’s core approach: First, we

https://github.com/squaresLab/genprog4java
https://plse.cs.washington.edu/daikon/


run Daikon on the original faulty program with positive test
cases to obtain a set of inferred possible invariants, denoted
by I0. Then, in each generation, we run tests and instrumented
code through each variant in the population to obtain invariant
profiles. We calculate diversity scores for each variant in the
population based on this profile, and use the diversity scores
in the fitness function in the multi-objective search.

A. Invariant Profiles
For each candidate patch, we construct an invariant profile

containing information about the patch’s behavior. This profile
consists of the reachability and truth value of a set of poten-
tially interesting invariants inferred by Daikon [15]. Due to
Daikon’s high computational cost, we do not learn invariants
from each patch. Instead, we infer potentially interesting
invariants from the original buggy program to create a starting
set of invariants. Moreover, we only run Daikon on positive
tests to construct this set of invariants, due to the practical
limitations of running Daikon on failing tests that crash the
program. We believe that learning properties over negative
tests may also be interesting, and leave the engineering and
conceptual approach to doing so to future work.

Daikon can learn potential invariants at multiple levels of
program abstraction. However, because patches can manipu-
late code arbitrarily, predicates that are sensible in describing
original intermediate program behavior may no longer be
evaluable on patched code. We therefore include only method-
level invariants in the starting set, denoted by I0, which enables
evaluation of whether an invariant continues to hold in an
arbitrary candidate patch.

Even though we use only positive tests for learning the
starting set of invariants, we do check whether invariants in I0
hold over both positive and negative tests when constructing
invariant profiles for candidate patches.

Assuming the following definitions:

T = Set of all test cases in a program’s test suite

T+ = Set of all positive test cases in T

T− = Set of all negative test cases in T
I0 = Set of inferred method-level invariants

The invariant profile for a particular patch v is constructed
as follows. We apply v to the original program code to produce
a variant program. We then instrument the variant program’s
code to evaluate, for every invariant p in I0, whether the
method associated with p is ever reached, and if so, whether
p holds for the variant or not. We collect the aforementioned
data separately for T+ and T−, and track and incorporate the
invariant data derived from the two sets of tests separately.

Let pi represent the ith invariant in I0. We represent the
invariant profile of a variant m, Πm, as a ternary vector of
length 2|I0|, where for all i between 0 and |I0|, the (2i)-th
and (2i+ 1)-th characters of Πm are:

Πm[2i] =


0 pi is always true for all tests in T+

1 pi is false at least once in T+

2 pi is never reached by any test in T+

Πm[2i+ 1] =


0 pi is always true for all tests in T−

1 pi is false at least once in T−

2 pi is never reached by any test in T−

B. Quantifying Invariant-based Diversity

To score the invariant-based diversity of candidate patches,
we compare a patch’s invariant profile to that of every other
patch in the population. The goal is to determine the unique-
ness of a patch’s invariant profile with respect to the other
candidate patches. To measure the difference in invariant be-
havior between two patches m1 and m2, we use the Hamming
distance of their invariant profiles Πm1

and Πm2
:

∆(m1,m2) = HammingDistance(Πm1
,Πm2

)

The diversity score of a patch m in population P , assuming
that m compiles and terminates within a specified time limit,
is the sum of the Hamming distances between m’s invariant
profile and the profiles of every other patch in P whose variant
programs compile and terminate:

diversity(m) =
∑
n∈P

{
∆(m,n) m and n compile and terminate
0 otherwise

In general, diversity among variants in a population discour-
ages premature convergence towards local optima [16]. By
promoting semantic diversity, we aim to encourage a repair-
oriented genetic algorithm to explore niches in semantic space.

C. Promoting Diversity

We use the invariant-based semantic diversity score as an
optimization objective, alongside the number of positive and
negative tests passed This treats program repair as a multi-
objective optimization problem. We use the NSGA-II algo-
rithm [29] for this purpose. NSGA-II is a genetic algorithm
that optimizes for multiple objectives using Pareto optimality.
NSGA-II also employs mechanisms to encourage population
diversity over the course of its search.

Note that we optimize for positive and negative tests as
separate objectives rather than using a weighted sum of
positive/negative tests as a single objective, as GenProg does.

V. EVALUATION

To analyze the effects of promoting invariant-based diver-
sity, we implemented our proposed technique as a extension
of GenProg4J3 and used the original version of GenProg4J as
a control. Using our modified version of GenProg, we answer
the following questions:
RQ1 Does optimizing for invariant-based diversity change the

effectiveness in searching for a repair with respect to the
number of repairs found, search performance, and search
success rate?

RQ2 Does optimizing for invariant-based diversity increase
the diversity of patches in a population?

RQ3 Does invariant-based diversity provide more granular
fitness (and therefore less plateauing)?

3https://github.com/squaresLab/genprog4java

https://github.com/squaresLab/genprog4java


Bug Scenario
program ID GenProg Our Approach

smallest
af81-000 10% 10%
8839-002 100% 100%

digits

0cdf-006 100% 100%
0cdf-007 90% 100%
d120-001 80% 90%
5b50-000 10% 0%

Total 65% 67%

TABLE I: Repair success rates for each bug repaired by either
GenProg or our approach. The unlisted 53 bugs have a success
rate of 0% for both techniques.

RQ4 Does our diversity-enhanced extension of GenProg scale
to large, real-world programs?

A. Efficiency, Repairability and Diversity

To answer RQs 1, 2, and 3, we use a modified version of
the IntroClassJava [18] dataset of bugs (see Section VI for
a discussion of the changes). IntroClassJava is a set of small
Java programs (< 30 lines) derived from IntroClass [30], a set
of buggy C programs written by students in an introductory
CS course. We use IntroClassJava as a benchmark since its
design and the small size of its constituent programs supports
controlled experimentation via larger numbers of repaire trials.

We ran GenProg and our technique on a random sample
of 59 out of a possible 297 bugs from IntroClassJava, and
repeated each experiment with 10 different random seeds. To
ensure a fair comparison between GenProg and our technique,
we use an identical configuration for both techniques, based
on the default settings for GenProg4J. We used the append,
replace, and delete repair operators, one-point crossover, tour-
nament selection (k = 8),4 a population size of 40, and ran
for 10 generations. We ran each experiment on Amazon EC2
using a c5.l instance with two vCPUs, 4 GB of RAM, and a
100 GB gp2 storage volume, running Ubuntu 16.04 LTS.

1) RQ1 – Performance: Across both GenProg and our
approach, a total of six unique bugs were successfully repaired
at least once. Table I provides the repair success rate (i.e.,
the likelihood that a given attempt to repair the bug will be
successful) for each of the six bugs.

We find that, with one exception, our approach and Gen-
Prog fix the same bugs. In the exceptional case, GenProg
repairs digits-5b50-000 once in ten seeds. Using a two-
sided version of Fisher’s exact test, we fail to demonstrate a
statistically significant difference (p < 0.05) in the success
rate between GenProg and our approach for each individual
bug and for all bugs in aggregate. Given GenProg’s low
success rate, our technique’s inability to find a repair on
digits-5b50-000 may be due to a sampling error.

Figure 3 compares the efficiency of our approach against
GenProg for the five bugs that were repaired by both tech-
niques, where we define efficiency as the number of unique

4At the time of our experiments, the default tournament size in GenProg4J
is 20% of the population size.
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Fig. 3: A comparison of the number of unique candidate patch
evaluations before a repair was found for the five bugs fixed
by both our approach and GenProg. Using a one-sided Mann-
Whitney U test, we fail to demonstrate a statistically significant
difference (p < 0.05) for any bug.

Bug Scenario
program ID GenProg Our Approach

smallest
af81-000 1 / 1 1 / 1
8839-002 8 / 10 8 / 10

digits

0cdf-006 9 / 10 10 / 10
0cdf-007 8 / 9 9 / 10
d120-001 4 / 8 6 / 9
5b50-000 1 / 1 0 / 0

Total 31 / 39 34 / 40

TABLE II: Number of unique repairs found for each bug
across all seeds.

candidate patch evaluations. Using a one-sided Mann-Whitney
U test [31], we fail to find a statistically significant improve-
ment (p < 0.05) over GenProg across all bugs.

Table II reports the number of syntactically unique patches
for each bug. Using a two-sided version of Fisher’s exact
test, we were unable to demonstrate a statistically significant
difference at the α = 0.05 confidence level (p = 0.249).

In summary, our results fail to demonstrate a significant
difference, be it negative or positive, to efficiency, repair
success rate, and the number of unique patches.

2) RQ2 – Diversity: To determine whether our search tech-
nique is an effective means of promoting semantic diversity
within the population, we compare the normalized population
diversity (NPD) between GenProg and our approach across
all 59 bugs sampled from IntroClassJava. We define the NPD
of a given population P as the sum of diversity scores of
the individual candidate patches belonging to that population,
divided by the number of individual patches in the population
squared and the length of invariant profile (Π) for a given bug.

NPD(P ) =
Σm∈P diversity(m)

|P |2 · |Π|
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Fig. 4: A comparison of normalized population diversity.
Except in generation 0, there is a statistically significant
difference (p < 0.001), computed using a one-sided Mann-
Whitney U test, between GenProg and our approach.

Figure 4 shows the distribution of NPD scores for GenProg
and our approach at each generation prior to selection. Our re-
sults show significantly higher diversity within the population
(after the initial population) with our approach, suggesting that
our algorithm is effective at promoting diversity. We observe
low levels of population diversity in the initial population
of the search (i.e., generation 0) for both our approach and
GenProg; this result is expected as the population has not
been subject to selection. With our approach, diversity levels
increase until the second generation of the search, at which
point diversity stabilizes.

For GenProg, we observe a significant increase in diversity
between generation 0 and all subsequent generations, which
immediately stabilizes after the first generation. This result
suggests that GenProg’s test-based fitness function implicitly
selects for semantic diversity, albeit relatively weakly.

3) RQ3 – Fitness Granularity: We measure the granularity
of fitness information available to each repair method by
analyzing the phenotypic diversity [32], [33] of populations.
We use a ratio of unique fitness scores to the size of the
population as a measure of phenotypic diversity.

Figure 5 compares fitness granularity between GenProg and
our approach. Using a one-sided Mann-Whitney U test, we
find that our approach significantly (p < 0.001) increases
fitness granularity. We observe a 71% increase in median
fitness granularity from 0.088 to 0.150 with our approach.

B. Scalability

To answer RQ4, we compare the wall-clock time for Gen-
Prog and our approach to run on 10 bugs from the De-
fects4J [19] dataset of real-world Java bugs. To accommodate
the larger test suites of Defects4J programs, we no longer infer
invariants I0 from the full set of positive tests T+. Instead,
we use a subset of T+ that only includes positive tests that
co-occur in JUnit test classes that also contain negative tests.
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Fig. 5: A comparison of fitness granularity within the popula-
tion prior to selection in each generation.

Bug GenProg Our Approach Difference

lang11 3586 s 3862 s 1.08 X
lang29 1783 s 2223 s 1.25 X
lang36 2088 s 2465 s 1.18 X
lang8 5850 s 6239 s 1.07 X
lang9 3304 s 4252 s 1.29 X
math30 5356 s 5433 s 1.01 X
math44 5906 s 10613 s 1.80 X
math46 4023 s 43229 s 10.75 X
math79 6033 s 7178 s 1.19 X
math86 3751 s 4287 s 1.14 X

Median 3887 s 4860 s 1.19 X
Mean 4168 s 8978 s 2.18 X

TABLE III: A comparison of the wall-clock time GenProg and
our approach takes to run a single seed across 10 bugs from
the Defects4J benchmark, in seconds.

We use a near-identical configuration to our IntroClassJava
experiments with two changes: (1) we use a population size
of 20, and (2) we evaluate variants on a random sample of 10%
of the positive tests [17], along with all negative tests. We ran
all experiments on a machine with the following specifications:
Ubuntu 16.04 LTS, 4 x Intel Xeon E7-4820 (40 cores), 128 GB
RAM, and 2 TB storage.

Table III presents a summary of our results. We find that the
median run-time is 19% higher when using our approach. We
expect our approach to be naturally slower than GenProg since
it introduces two notable overheads: (1) before the search,
we run Daikon on the original program to infer a set of
likely invariants I0; (2) we instrument each variant program
and re-run the test suite to obtain an invariant profile. The
static overhead from (1) is necessary only once per bug and
amortizable across multiple repair attempts. We can reduce
the dynamic overhead from (2) by further optimizing our
implementation (e.g., by avoiding redundant test executions).

The order-of-magnitude increase in run-time for math46 is
likely explained by an abnormally large number of inferred in-
variants. The object file containing all invariants instrumented
for math46 is 1.91MB, an order of magnitude larger than
the object files of other math bugs’ instrumented invariants
(varies between 16KB and 232KB). Our implementation adds
instrumentation for each individual predicate in I0 to the



program. As a result, a large amount of instrumentation was
added to math46, creating a substantial static overhead. We
may reduce this overhead by optimizing the instrumentation
process and by filtering spurious invariants.

In summary, our results show that our prototype implemen-
tation, in most cases, introduces a tractable run-time compu-
tational overhead (approximately 19%) over base GenProg,
suggesting it may plausibly be applied to larger programs.

VI. THREATS AND LIMITATIONS

a) Manual Code Modification: In porting IntroClass for
C [30] to Java, the IntroClassJava authors elected to include
all primary functionality in a single Java method. Input values
are retrieved using I/O in the middle of this single method.
Daikon struggles to identify interesting invariants over code
organized this way. We thus mechanically refactored Intro-
ClassJava code to relocate core logic into a separate method
and more clearly delineate input and output values for the
different problems. This decouples our technique performance
from Daikon performance. We anticipate that dataflow analysis
or slicing techniques can automate the task of identifying
potentially interesting input and output values, as has been
done in different program repair contexts [34].

b) Repair Quality: Repair quality is a key unsolved
concern in program repair. Both search- and semantics-based
approaches can create patches that overfit to the provided test
cases, or fail to generalize to the desired but unwritten program
specification [35], [36]. We did not evaluate the quality of
the repairs that GenProg and our repair technique produced,
relying instead on performance on the provided test cases. We
leave assesment of repair quality to future work.

c) Invariant Quality: While Daikon can detect various
types of invariants, Daikon’s limited set of supported invariants
and scope restrict the tool’s flexibility. Daikon’s inability to de-
tect invariants relating to the state of variables at intermediate
statements of a method lead us to refactor IntroClassJava.

Daikon may also produce trivial invariants such as this
!= null. These invariants provide no useful semantic in-

formation. Unnecessarily evaluating these invariants wastes
computational resources. Inferred invariants may also overfit.
For example, if a program executes the function sin(x)
only ever with input x = pi * n, Daikon might infer sin
(x)= 0 as an invariant. Nonetheless, overfit invariants may
sometimes be useful in our approach, as breaking them with
the same input indicates a change in program semantics. We
may attempt to mitigate these limitations in the future by
filtering Daikon’s output to remove low-quality invariants.

VII. RELATED WORK

There exist previous efforts to create better fitness functions
using invariants [17], intermediate program state [12], and
historical repair patterns [8] to guide the search.

Fast et al. [17] propose an alternative fitness function for
GenProg that uses learned invariants to identify and promote
partial solutions. Their fitness function is implemented as a
linear model that accepts inferred invariants and test cases as

its features. Existing patches are used to create training data
that is used to construct a linear model for a given program and
to learn associations between invariants and patch correctness.
In contrast to Fast et al.’s approach, our approach does not
require training data.

de Souza et al. [12] aimed to reduce fitness plateaus by
injecting source code checkpoints to track pre-determined
variables. Based on changes in these variables and the results
of fault localization, they incorporate a checkpoints metric into
the fitness function. de Souza et al. found that their approach
reduced plateauing, fixed more bugs, and improved efficiency.
Our approach provides an orthogonal method for reducing
plateauing that uses automatically learned invariants instead
of the values of pre-determined variables.

Timperley et al. [37] aim to reuse variant test results col-
lected over the course of the search to determine fix locations
via a dynamic mutation-based fault localization. They found
that modifications to correct statements are more likely to
result in the failure of previously passing tests, but that few
previously passing tests covered the faulty area of the program.
Ultimately, they were unable to demonstrate a significant
improvement to the accuracy of fault localization when variant
test cases were analyzed. Our approach might address the lack
of sufficient test coverage necessary to perform effective muta-
tion analysis — at no additional cost — by observing changes
to invariant profiles rather than test cases.

Beadle and Johnson [38] investigated promoting semantic
diversity during population initialization in genetic program-
ming. They developed semantically driven initialization algo-
rithms for Boolean and artificial ant problems. Using their
algorithms often resulted in better performance compared to
RHH [24], a standard initialization technique. Their results
suggest that promoting invariant diversity during initialization
may yield greater performance.

VIII. CONCLUSIONS

Our early results demonstrate that inferred invariants can
be used to effectively increase semantic diversity within the
population, and to reduce fitness plateauing in search-based
automatic program repair. Using Defects4J, we demonstrate
that a prototype implementation of our technique scales to
bugs in large-scale, real-world programs. In our experiments
on IntroClassJava, we fail to demonstrate a statistically sig-
nificant improvement to efficiency, the number of bugs fixed,
unique patches found, and repair success rate.

A possible explanation for this result is that the search space
contains few, if any, acceptable repairs. Our approach uses the
same statement-level repair operators as GenProg, and so it
shares the limitations of GenProg’s search space. To obtain a
better idea of how our approach improves search performance,
we plan to evaluate our approach with a richer search space,
generated using a larger number of mutation operators.

Going forward, we also plan to collect more data on our
approach’s performance on a larger number of bugs, including
the rest of the IntroClassJava and Defects4J datasets, along
with JaConTeBe [39] and Bugs.jar [40]. We may also attempt



to improve our approach’s run time by pruning invariants and
by optimizing the code instrumentation process.

To encourage further investigation and ensure reproducibil-
ity, we provide a prototype implementation of our technique,
along with the results and raw data from our study, as part of
our replication package at https://bit.ly/2HNQ5g7
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