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ABSTRACT

Recently there has been a proliferation of automated program repair
(APR) techniques, targeting various programming languages. Such
techniques can be generally classified into two families: syntactic-
and semantics-based. Semantics-based APR, on which we focus,
typically uses symbolic execution to infer semantic constraints and
then program synthesis to construct repairs conforming to them.
While syntactic-based APR techniques have been shown success-
ful on bugs in real-world programs written in both C and Java,
semantics-based APR techniques mostly target C programs. This
leaves empirical comparisons of the APR families not fully explored,
and developers without a Java-based semantics APR technique. We
present JFIx, a semantics-based APR framework that targets Java,
and an associated Eclipse plugin. JFix is implemented atop Sym-
bolic PathFinder, a well-known symbolic execution engine for Java
programs. It extends one particular APR technique (Angelix), and
is designed to be sufficiently generic to support a variety of such
techniques. We demonstrate that semantics-based APR can indeed
efficiently and effectively repair a variety of classes of bugs in large
real-world Java programs. This supports our claim that the frame-
work can both support developers seeking semantics-based repair
of bugs in Java programs, as well as enable larger scale empirical
studies comparing syntactic- and semantics-based APR targeting
Java. The demonstration of our tool is available via the project
website at: https://xuanbachle.github.io/semanticsrepair/
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1 INTRODUCTION

Bug fixing is known to be difficult, time-consuming, laborious,
and expensive. Automated program repair (APR) techniques that
can help developers tackle the bug-fixing challenge would thus
be of tremendous value. Numerous recent research advances have
brought the once-futuristic idea of APR closer to reality [8, 9, 11, 13-
15, 17]. APR techniques can be generally categorized as two fami-
lies: syntactic- (or heuristic) versus semantics-based. Syntactic APR
techniques typically generate a large number of possible candidate
bug-fixing patches by manipulating or applying repair templates
to the abstract syntax tree of buggy programs. Recent works in
this family include PAR [6], and HDRepair [11] that can repair
many large, real-world Java programs. Meanwhile, semantics-based
techniques typically use symblic reasoning to infer semantics con-
straints, or specifications from behavior on test suites, leveraging
program synthesis to synthesize repaired expressions that conform
to the extracted specifications. A recent semantics-based APR tool
named Angelix [17] has demonstrated good scalability in repair-
ing bugs in large real-world programs written in C, comparable
to those targeted by syntactic approaches. Recent APR techniques
target different programming languages, namely C and Java; this
can make it difficult to empirically compare all such tools. Also,
although Java is the most popular programming language and its
influence is growing over time,! yet there are only a few successful
repair tools targeting Java [4, 6, 11], with some C-based tools trans-
lated accordingly (such as in the Astor framework [16]). Only a few
of them have publicly available implementations [4, 11]. With the
exception of Nopol [4], semantics-based techniques target and are
implemented for C programs.

We demonstrate JF1x, a repair framework and an associated
Eclipse plugin that bring the strength of semantics-based APR
approach to repair Java programs. We have two primary users in
mind that inform our framework design: (1) Researchers, for whom

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
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we seek to provide an extensible semantics-based repair framework
that targets Java, enabling extensions of and empirical comparisons
with Java-focused APR techniques, and (2) Developers, for whom we
seek to provide real-world semantics-based Java repair facilities. We
therefore translate and extend Angelix [17], a traditional semantics-
based APR technique, such that it can target Java, making use
of a selective symbolic execution procedure based on Symbolic
PathFinder [19]. We further implement several additional features
in support of our primary goals:

o Extensibility. We implement repair specification inference in a
generic fashion, to support a framework that can integrate many
different synthesis engines [10]. Our experiments show that our
framework can repair more bugs by using multiple synthesis
engines.

o Java-specificity. We extend our tool to infer specifications that
could help repair bugs related to method calls, that traditional
semantics-based APR such as Angelix is not yet able to handle.?
Bugs related to method calls are prevalent in Java programs [18],
and thus, JFix’s ability to repair these bugs would be valuable.
Usability. Angelix requires users to manually instrument the
program under repair for the specification inference task, that
could be tedious and error-prone. As opposed to Angelix, we
alleviate the burden of manually inspecting and instrumenting
the program under repair (discussed in Section 2.1). We also
provide an Eclipse plugin associated with JFix to bring it to
wider classes of users.

We demonstrate JF1x on a small set of 47 Java bugs from the In-
troClass benchmark [12], and nine real bugs from large real-world
software. The results show that JF1x’s unique ability in leveraging
multiple synthesis engines allows it to repair more bugs as com-
pared to using a single synthesis engine alone. JFIx can repair bugs
with various types, including those involving method calls, and at
scale. Also, JF1x is able to generate multi-line fixes. This promising
result suggests that JF1x can enable larger empirical comparison of
repair tools targetting Java programs in the future, and facilitate an
open research environment. A demonstration of JFix is available
at https://xuanbachle.github.io/semanticsrepair/.

The remainder of this paper is as follows: Section 2 explains
JFix. Experimental results are presented in Section 3, followed by
discussion, conclusion and future work in Section 4.

2 SEMANTICS-BASED REPAIR WITH JFIX

Figure 1 depicts the flowchart of our framework. Assume as input
a Java program and a set of JUnit test cases, at least one of which is
failing; the goal is to modify the program such that all test cases pass.
Given the input, the JFix front-end first instruments the program,
and runs tests to collect traces. These traces are then input to the
fault localization module to identify likely-buggy locations. This
module outputs top-ranked locations, which are later given to the
JF1x back-end. The back-end performs selective symbolic execution
to obtain error-free execution paths and path conditions, which can
then be used to infer the specifications. The inferred specifications
inform the synthesis of replacement code (patch) for the buggy
expressions. If the patched program does not pass validation tests,

2 JFIX can fix bugs in programs that are written in Java 7 and 8, and not related to
lambda functionality.
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JF1x continues the process with newly chosen buggy locations,
until a patch that passes all validation tests is found (or the set of
candidate buggy locations is exhausted).

Input
Program
Fault Selective
. Symbolic Specs
Localizations .
Execution
Test Cases
No Synthesizer

v Repaired Yes

Patch

Figure 1: Flowchart of JFix’s approach.
Next, we detail JF1x’s approach. We then describe an Eclipse
plugin for the tool.

2.1 Overall Approach

We illustrate the approach via the example in Figure 2, a real bug

from the Commons Math library [1] at revision e5c¢7e40: the param-

eter maxUlps is used instead of epsilon in a method call, which is
wrapped inside a loop.

1 for (int i = getNumObjectiveFunctions(); i

getArtificialvVariableOffset(); i++) {

final double entry = tableau.getEntry(o, i);
- if (Precision.compareTo(entry, od, maxUlps) > @)
+ if (Precision.compareTo(entry, od, epsilon) > 0)

{

columnsToDrop.add(i);

}

<

N U~ WN

}

Figure 2: A bug in Commons Math library, revision e5c7e40.
The bug is at line 3, and the corresponding developer-
submitted fix is depicted at line 4.

First, JF1x uses Ochiai [2], a fault localization metric, to iden-
tify likely-buggy locations; in our example, it identifies line 3. JF1x
then installs symbolic variable(s), a;, to represent the selected lo-
cation(s).? Particularly, the code at line 3 in our example would
become if («). JFIx runs symbolic execution on the instrumented
program against test suites to collect path conditions that do not
lead to any test failures. By this way, JF1x only symbolically reasons
about certain selected likely-buggy program locations, allowing it
to scale to large programs (demonstrated in Section 3). We imple-
mented this symbolic execution atop Symbolic PathFinder [19].

Solving the failure-free path conditions returns constraints over
«a that lead the tests to pass; These constraints serve as a postcon-
dition on the code at a. The precondition is represented by the
collection of runtime values of visible variables, fields, and method
calls at the buggy expression(s) before executing the expression(s),
e.g., variables named i, entry, maxUlps,epsilon, and method calls
such as Precision.compareTo(entry, 0d, epsilon) in our example. These
specifications are then passed to a synthesis engine to construct pos-
sible replacement expressions, consistent with prior work [10, 17].

Although the specification inference task in JF1x shares the same
spirit with Angelix [17], there are key differences. Angelix requires

3For simplicity, we describe the process with respect to a single-line fix. However, the
approach generalizes to multi-line fixes by installing multiple symbolic variables.



JFIX: Semantics-Based Repair of Java Programs via Symbolic PathFinder

users to manually instrument the program under repair in order to
infer specifications: Users need to identify relevant output variables
of the program and specify desired outputs for them.* This can
be an especially daunting and error-prone task when the program
under repair is large and involves many outputs (e.g., an array of
integers).

JF1x automatically infers specifications by leveraging the capa-
bilities of Java PathFinder (JPF) [22]. JPF appropriately interprets
assertions, a necessary part of JUnit test cases, in an automated
manner. JF1x thus inherits this functionality from JPF since it is
implemented atop Symbolic PathFinder [19]. This allows JFIx to
automatically separate error-free execution paths from the buggy
ones. Subsequently, JF1x can automatically extract the specifications
without requiring manual instrumentation from users.

We next discuss runtime values collection schemes in Section 2.2,
that support the specification inference phase.

2.2 Runtime Values Collection

We allow users to instruct JFIx to selectively collect runtime values
that are of potential interest. This enables JF1x to filter out poten-
tially unnecessary/irrelevant runtime values, subsequently making
the inferred specifications more concise.

We collect runtime values of various sources capturing common
bug fixing scenarios [18]. The sources are described bellow; note
that “in-scope” is always used with respect to the considered buggy
line(s).

Values of fields of the buggy class.

Values of in-scope local variables.

Values of variables used elsewhere in the same file.

Values of variables (locals, fields) used at the buggy lines.
Result of method calls used elsewhere in the same file. The col-
lected calls should be return type-compatible with those used
at the buggy lines. This allows method call substitution, such as
shown in Figure 2.

Result of method calls used in the buggy lines, but with one or
more different parameters.

Result of methods calls declared in the same class that are com-
patible (e.g., same return type) with those used at the buggy
lines.

We allow users to specify (a combination of) only a small number
of sources, for which the runtime values will be collected.

2.3 Multiple Synthesis Solvers

Once the specifications are inferred, synthesis solvers will be used
to synthesize repairs conforming to the specifications. An interest-
ing feature of JFIx is the ability to use multiple synthesis solvers
as opposed to traditional semantics-based repair approach such as
Angelix [17] which only uses a single synthesis solver alone. JF1x
implements a procedure that translates the inferred specifications
into a syntax guided synthesis (SyGuS) grammar, allowing it to
employ the SyGusS solvers [10].° Particularly, JFIx can use the syn-
thesis engine of Angelix [17], and state-of-the-art SyGuS solvers
namely Enumerative and CVC4 [3].

4See Angelix’s tutorial for more details:
https://github.com/mechtaev/angelix/blob/master/doc/Tutorial. md
SWe refer interested reader to the detailed translation described in [10]
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Enumerative

Figure 3: Non-overfiting repairs generated by JFix using mul-
tiple synthesizers, namely Angelix, Enumerative, and CVC4

2.4 Eclipse Plugin

We also implemented an Eclipse plugin that supports a user inter-
face with JF1x. The developer can configure our plugin in Eclipse
programming environment with various options (such as the run-
time collection schemes described in previous section 2.2), to repair
the buggy program. The demonstration video of JFix and its Eclipse
plugin is available at: https://xuanbachle.github.io/semanticsrepair/.

3 EMPIRICAL EVALUATION

We show that JF1x’s unique ability in employing multiple synthesis
engines allows it to repair more bugs relative to Angelix which is
a traditional semantics-based repair that uses a single synthesis
engine alone [17].

RQ1. How frequently can JF1x generate generalizable repairs?
Can JF1x generate multi-line repairs?

We evaluated JFIx on 47 bugs in the smallest subject program
from a Java implementation of the IntroClass benchmark consisting
of student written homework assignments in a freshmen class [12].
The smallest subject program finds the smallest number among four
integer numbers. Each program version is accompanied by two test
suites: black-box tests manually written by the class instructor,
and white-box tests automatically generated by the automatic test
generation tool. Note that we use the Java versions of the dataset
available in [5].

We use black-box tests to generate repair. White-box tests are
later used as held-out tests to assess if generated repairs overfit to
the test cases used for repair. This validation method is a proxy for
an objective assessment of repair quality that is often used in prior
works, e.g., [10, 20]. If a repair does not pass the white-box tests,
we say the repair does not generalize, or overfits to the training set,
and is thus of lower quality than likely desired. Repair techniques
that create more generalizable patches are better on the whole.

Figure 3 shows the number of non-overfitting/generalizable re-
pairs, which pass all tests including the held-out tests, generated
by the synthesis engines, namely Angelix ’s synthesis engine (de-
noted as Angelix), Enumerative, and CVC4. The result shows that
JFix’s unique ability in employing multiple synthesis engines can
enhance the capability of generating more non-overfitting repairs.
For example, there are 14 bugs that Enumerative and CVC4 can
generate non-overfitting repairs while Angelix’s synthesis engine
cannot generate.

JF1x is also able to generate multi-line patches. Figure 4 shows a
multi-line patch generated by JF1x using Angelix’s synthesis engine
for a smallest program version. The patch involves simultaneous
changes at lines 3, 8, and 13.
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RQ2. Can JFix scale to large, real-world software?

We applied JF1x to nine real bugs from large real-world software
including Commons Math library [1], which contains 175 kLOC in
the package.

JF1x successfully repairs all bugs by using multiple synthesis
solvers. To assess the correctness of each generated repair, we
check whether the repair is equivalent to the repair submitted by
developers. A repair is equivalent to the developer-submitted fix
(indicated by ¢ in Table 1) if it can be transformed to the developer’s
fix by basic syntactic transformations (as similarly conducted in [?
]). For example, (a || b) and (b || a) are considered equivalent
by swapping left and right hand sides of the operator | |. We also
note that JF1x can efficiently repairs bugs in up to 4 minutes. In
summary, the results show that JF1x is scalable and efficient.

Table 1: Real-world software bugs fixed by JFix. “Rev”
shows bug-fix revisions. “Type” shows bug types: “I” denotes
method call, “II” denotes arithmetic. “Time” shows repair
time (in seconds) (“NA” denotes not available). “Dev” indi-
cates developer-equivalent patch: “¢/” denotes equivalent,
and “X” denotes otherwise.

Project Rev Type Angelix Enum CVC4
Time Dev Time Dev Time Dev
09fe I 23s ¥ 268 ¥ 36s ¥V

Math edsa IT&II 168s ¢ NA X NA X
Jflex 2e82 1I NA X 708 ¢ 728 ¥V
Fyodor 2e82 1I 28 ¢V 195 ¢ 3ls V¥V
SFM 5494 11 12s X 10s v 13s v
EWS 299a 1 NA X 14s vV 258 V
Orientdb b33c 1T 20s ¥V 22s VvV NA X
Qabel 299¢ II 37 ¢ 228 X 238 X
Kraken  8b0f 1I 12s ¢ 13s X 15s X
1 if (a.value > b.value) {

2 m.value = b.value;

3 } else if (a.value < b.value) {//changed < to <

4 m.value = a.value;

5 } if (m.value > c.value) {

6 n.value = c.value;

7 } else if (m.value < c.value) {//changed < to <

8 n.value = m.value;

9 } if (n.value > d.value) {

10 p.value = d.value;
11 } else if (n.value < d.value) {//changed < to <
12 p.value = n.value;
13 3
14 println("smallest number is: \%d", p.value)

Figure 4: A multi-line fix by JF1x for a smallest program ver-
sion. The goal of the program is finding the smallest number
among the values of a, b, ¢, and d.

4 DISCUSSION & CONCLUSION

JF1x’s approach is sound in the sense that the repairs generated
by JF1x pass all tests. We further assess the quality of generated
repairs by various proxies: (1) use an independent test suite for
testing the repairs, (2) check whether the repairs are equivalent
to the fixes submitted by developers. Regarding bugs that JFix
currently cannot repair, we found that these bugs often require
adding new code structure, e.g., adding a branch else{...} to
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fix. This is actually a common drawback of semantics-based repair
systems in general [17].

In summary,we presented JF1x — a Java-targeted semantics-based
repair framework that consists of several repair synthesis engines,
and its associated Eclipse plugin. JF1x can repair various bug types,
including bugs that involve multiline changes or method calls, and
scale to large real-world programs. As future work, we plan to
enhance JF1x by employing specification mining tools (e.g., [7]) to
strengthen the inferred specifications, and automatically detecting
defect types (c.f., [21]) as a step to customize repair techniques to
fix specific defects more efficiently.

ACKNOWLEDGMENTS

We thank Vu Le (Microsoft Research, Redmond), and anonymous
reviewers for their comments. Duc-Hiep Chu was supported in
part by the Austrian Science Fund (FWF) under grants S11402-N23
(RiSE/SHINE) and Z211-N23 (Wittgenstein Award).

REFERENCES

[1] 2016. Apache common Math library. (2016). http://commons.apache.org/proper/
commons-math/

Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. On the accuracy of
spectrum-based fault localization. In TAICPART-MUTATION 2007.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund
Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Em-
ina Torlak, and Abhishek Udupa. 2015. Syntax-guided synthesis. Dependable
Software Systems Engineering (2015).

Favio DeMarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. 2014.
Automatic repair of buggy if conditions and missing preconditions with smt.
Thomas Durieux and Martin Monperrus. 2016. IntroClassjava: A Benchmark of
297 Small and Buggy Java Programs. Technical Report.

Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In ICSE.

Tien-Duy B Le, Xuan-Bach D Le, David Lo, and Ivan Beschastnikh. 2015. Syner-
gizing specification miners through model fissions and fusions (t). In ASE.
Xuan Bach D. Le, Quang Loc Le, David Lo, and Claire Le Goues. 2016. Enhancing
Automated Program Repair with Deductive Verification. In ICSME.

Xuan-Bach D Le, Tien-Duy B Le, and David Lo. 2015. Should fixing these failures
be delegated to automated program repair?. In ISSRE.

Xuan Bach D Le, David Lo, and Claire Le Goues. 2016. Empirical study on
synthesis engines for semantics-based program repair. ICSME.

Xuan Bach D Le, David Lo, and Claire Le Goues. 2016. History Driven Program
Repair. In 23rd SANER.

Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass benchmarks for automated repair of C programs. IEEE TSE (2015).
Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A generic method for automatic software repair. TSE (2012).

Fan Long and Martin Rinard. 2015. Staged program repair with condition syn-
thesis. In ESEC/FSE.

Fan Long and Martin Rinard. 2016. Automatic patch generation by learning
correct code. In ACM SIGPLAN Notices.

Matias Martinez and Martin Monperrus. 2016. ASTOR: A Program Repair Library
for Java (Demo) (ISSTA 2016). 441-444.

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In ICSE.

Kai Pan, Sunghun Kim, and E. James Whitehead, Jr. 2009. Toward an Under-
standing of Bug Fix Patterns. Empirical Software Engineering (2009).

Corina S Pasdreanu, Willem Visser, David Bushnell, Jaco Geldenhuys, Peter
Mehlitz, and Neha Rungta. 2013. Symbolic PathFinder: integrating symbolic
execution with model checking for Java bytecode analysis. ASE journal (2013).
Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure
worse than the disease? overfitting in automated program repair. In ESEC/FSE.
Ferdian Thung, Xuan-Bach D Le, and David Lo. 2015. Active semi-supervised
defect categorization. In ICPC.

Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio
Lerda. 2000. Model Checking Programs. Automated Software Engineering (2000).

[2]
[3]

(12]


http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/

	Abstract
	1 Introduction
	2 Semantics-based Repair with JFix
	2.1 Overall Approach
	2.2 Runtime Values Collection
	2.3 Multiple Synthesis Solvers
	2.4 Eclipse Plugin

	3 Empirical Evaluation
	4 Discussion & Conclusion
	Acknowledgments
	References

