

Examining Programmer Practices for
Locally Handling Exceptions

Mary Beth Kery, Claire Le Goues, Brad A. Myers
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213 USA

{mkery, clegoues, bam}@cs.cmu.edu

ABSTRACT
Many have argued that the current try/catch mechanism for
handling exceptions in Java is flawed. A major complaint is that
programmers often write minimal and low quality handlers. We
used the Boa tool to examine a large number of Java projects on
GitHub to provide empirical evidence about how programmers
currently deal with exceptions. We found that programmers han-
dle exceptions locally in catch blocks much of the time, rather
than propagating by throwing an Exception. Programmers make
heavy use of actions like Log, Print, Return, or Throw in catch
blocks, and also frequently copy code between handlers. We
found bad practices like empty catch blocks or catching Excep-
tion are indeed widespread. We discuss evidence that program-
mers may misjudge risk when catching Exception, and face a
tension between handlers that directly address local program
statement failure and handlers that consider the program-wide
implications of an exception. Some of these issues might be ad-
dressed by future tools which autocomplete more complete han-
dlers.

CCS Concepts
• Repository Mining

Keywords
Java Exceptions, Boa, GitHub, Error Handlers.

1. INTRODUCTION
When routine failures occur in a software system, exception-
handling code is critical for the software to recover to a safe state
or terminate safely. With Java checked exceptions, the compiler
forces programmers to write code to deal with exceptions that can
arise locally. In Java, the programmer can declare that an excep-
tion passes through this method by declaring it in the method
header, forcing a higher-level program component in the call
chain to handle it, or the programmer can handle the exception
locally in try/catch block. The try block is used to surround at
least one statement that may throw an exception. One or more
catch blocks can follow a try block, each of which designates

how the program will handle specific exceptions.

Programmers cannot ignore exception handling, yet past studies
have argued that programmers do not write good-quality excep-
tion handlers [1][4]. A partial explanation is that there exists little
support for programmers in this task. Several past studies [5][6]
have introduced tools to help programmers understand exception
propagation flow – that is, when the programmer wants to throw
an exception or understand where a checked exception is coming
from. These involve complex concerns, such as proper de-
allocation of resources on all possible error paths, or security con-
cerns of implementation information that might be revealed on all
possible error paths. Our data shows that programmers are actual-
ly struggling to use exceptions as the Java language intended on
the most basic issues, even before addressing higher-level con-
cerns.

In our current study we examined Java code at a large scale, over
11 million try/catch blocks from GitHub. We help illustrate
that propagation is only one piece of the challenge programmers
face. The majority of the time programmers do not themselves
throw exceptions up the call chain, but locally handle exceptions
raised by the methods they call. Simple bad practices are extreme-
ly prevalent. We found 12% of catch blocks were completely
empty. Meanwhile, a full quarter of all exceptions caught are
simply Exception. Note that although there are specific pro-
gram situations where each of these bad practices can be reasona-
ble, it is unlikely these explain the high prevalence we observed.

In this project, we focus on what try/catch blocks contain, and
the decisions programmers appear to make when locally handling
exceptions. We categorize the contents of exception handlers on
GitHub. We find that the majority of instances are only a few
lines of code, and much of the content can be described by simple
actions like Throw, Log, Return, or print. We then discuss impli-
cations for aiding programmers with error handling through tool
support.

2. RELATED WORK
Cabral et al. performed a closely related analysis to ours on 16
Java and 16 .Net programs, which were large production systems
[4]. They manually examined exception handlers, so the descrip-
tions in their work are more complete than ours, since we cannot
determine the purpose of all code statements automatically. They
categorized catch blocks into actions like “Log” or “Rollback”.
Our work differs in that we examine a far larger set of Java pro-
jects and error handlers and focus on the attributes of a more gen-
eral population of programmers. Code on GitHub ranges from
large open-source projects down to student homework assign-
ments. Our aim is to inform tool support that supports program-
mers in general with their exception handling needs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
MSR'16, May 14-15, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4186-8/16/05…$15.00 �

DOI: http://dx.doi.org/10.1145/2901739.2903497

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 484

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 484

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 484

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 484

3. METHODOLOGY
3.1 Research Data
We analyzed nearly 8,000,000 Java repositories on GitHub pro-
vided by the Boa tool [1]. This contains 11,624,617 complete try
exception-handling blocks. Try/catch blocks may be nested
with try/catch blocks inside them, so here we count a “com-
plete” exception handler as the outermost try. As a try can be
followed by multiple catch blocks, the dataset contains more
catch blocks (12,254,679) with an average of 1.05 catch
blocks per try. While we focused our analyses on handlers with
catch blocks, 14.2% of these try blocks have no catch, and
re-throw any exceptions from the method declaration directly.

We did not include try/catch blocks found in test classes,
which make up another 4 million complete handlers on GitHub.
Program testing is a significant use for try/catch that is not
strictly related to error handling. A test class runs a Java program
on a variety of input values, and records which ones fail. Thus, in
a test, catching any exception is acceptable, as is doing nothing
but alerting the programmer of the failed test. These are excluded
from the following analyses.

Java source code in the Boa tool is provided preprocessed into
Abstract Syntax Tree (AST) form. Thus, try/catch blocks were
easy to identify by their AST node label. Two drawbacks to the
Boa format is that we lost any information about finally
blocks (which were not encoded in Boa), and also any comments
programmers left in the handlers, such as “//TODO” notes.

3.2 Exception Handler Categorization
AST nodes in Boa are labeled by their kind, such as METHOD,
VARIABLE, or STATEMENT. For each repository and for each
Java file, we recorded a description of every instance of a try or
catch node. For each catch node we describe its child nodes
(every program statement within that catch block) by their AST
labels. Statements within catch are important because these are
actions the programmer is taking to handle the exception. For
certain statements within a catch block we record more detail. For
THROW we record the type of the Exception thrown; for a RE-
TURN we record the return argument. For EXPRESSION, we
record the full AST information because EXPRESSION is used
for method calls, including the method name and arguments.
From method names, we were able to use simple text matching to
refine our categorization of EXPRESSION into recognizable er-
ror-handling related methods such as a stack trace print or logging
(a method whose name is “log” or “logger”). A limitation of sim-
ple text matching is that for most of the method calls we could not
categorize their purpose. Future work may involve using more
sophisticated methods such as from natural language processing.

In the AST, a try contains whatever code could go wrong, which
is arbitrary for this analysis, so we record only nested try/
catch or throw statements within a try block. Our final de-
scription for a complete exception handler was a sequence of la-
bels in a single line, e.g., “TRY, CATCH: SQLException: 1
line, EXPRESSION: "error()", END_CATCH, END_TRY

4. RESULTS
4.1 Catch Block Size and Content
We used our representation of try/catch from Boa to describe
the size (number of statements) and content of each catch block.
While we observed a maximum size catch block of 888 state-

ments, the vast majority of catch blocks contain only a few
statements, as shown in Figure 1 on a log scale.

There is an increase in the graph of catch blocks from 0 to 1
statements that is much shallower than we would hope to see.
12.4% (1,515,523) of the catch blocks have size 0 so they are
literally empty and do nothing. These ignore and “swallow” ex-
ceptions (hide from the whole program that an exception oc-
curred). There are situations where an empty catch is truly legit-
imate to the program logic, but it is generally considered bad prac-
tice [8] so seeing so this degree of them is worrisome.

In Figure 2, we show the distribution of content in a catch block
of each size. We display the kinds of statements that occur in at
least 1% of error handlers. For legibility, some statements are
shown in broader categories – for instance “Control Flow” in-
cludes if statements, for/while loops, and switch state-
ments. Control Flow (green in Figure 2) substantially increases
with catch size.

“Print” is the second broad category of interest, as it includes
normal print statements and also e.printStackTrace(). A
programmer can print an exception’s stack trace to get a detailed
printout of the exception’s propagation, which is useful for de-
bugging However, having only e.printStackTrace() is
generally bad practice because this is swallowing the exception. In
our dataset, a full 10% of catch blocks print the stack trace and do
nothing else. A generous hypothesis is that these programmers are
at an early implementation stage where a debug console print is
enough. We note also that this pattern, with a //TODO comment,
is the default auto-complete for popular Java IDEs like Eclipse1.
This suggests another hypothesis that programmers are simply
leaving the default result of autocomplete.

Additionally, at least 10% of catch blocks only write to a log. We
categorize methods as “log” if they include the word “log” and as
“print” if they have the word “print,” but these are not mutually
exclusive, since some print methods can be specially configured
to write to a log. We cannot easily automatically detect the con-
figuration of a “print,” so 10% is a conservative estimate that only
counts “log". Logging takes no action to actually resolve a failure,
but is acceptable in cases where the exception raised may have no
real consequences for program state. Logging is an improvement
over printing to the console because it records the exception in a
permanent, reviewable form.

1 https://eclipse.org/

Figure 1: Frequency of catch blocks by number of state-
ments in the catch block

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

0 5 10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

97

11
0

11
9

13
2

14
4

15
1

16
6

18
1

32
9

Ca

tc
h
bl
oc
ks

 (l
og

 sc
al
e)

Statements in catch block

485485485485

Another 5% of catch blocks contain only return. We explored
return statements, because exceptions were originally proposed as
a language mechanism to avoid the ambiguity of error-code return
values [7]. Exactly half of values returned from a catch block
were false or null. These values often indicate a negative
result in normal control flow. Like logging, this suggests pro-
grammers (whether correctly or not) deem a specific exception to
have no real consequences on state, and present it instead as an
un-exceptional failure. The remainder of returns could not be
automatically categorized.

For catch blocks under 10 statements, which accounts for
11,981,327 or 98% of all catch blocks, the majority of actions
are Throw, Return, Print, Log, and/or a method call.

4.2 Similarity Measures
Common actions like Throw, Return, Print, or Log are composa-
ble and simple. The error-handling quality of any of these is de-

batable based on a specific program’s logic, but we suggest that
these actions are evidence of exception handler policies: routine
ways programmers understand to deal with exceptions. We further
explored indicators of policy, or simply, repeated patterns in a
program’s catch blocks. How often do programmers not only
use similar actions, but also repeat the exact same code?

We adapted the Levenshtein distance metric to estimate the simi-
larity of two catch blocks. Levenshtein distance can be thought of
as the minimum number of single-character edits (insertions, dele-
tions, substitutions) required to change one string into the other.
Given our string representation of a catch block, we treat each
token label (e.g. CATCH) in the string as an individual 'character'
for the purpose of distance measurement. Thus, the string "return
null" can be edited to be "return foo" with a single replacement
(“foo” for “null”). This is consistent with approaches taken in
other studies of lexical source code similarity [10].

We calculated the average similarity between two catch blocks
that are: in the same project, in the same file, and unrelated. The
baseline average similarity of two catch blocks that are random-
ly sampled from different projects was 7%. The average similarity
of catch blocks in the same project was 18%. However, the
similarity of handlers in the same file is 65%, which is much
higher than we would expect for generic code, inviting several
hypotheses. A Java class generally contains related functionality,
so intuitively it makes sense that similar exceptional situations
will occur in a single class and be handled in similar ways. Thus
using the same code may be reasonable much of the time. A nega-
tive view is that programmers may just be lazy, but we suggest
programmers may be copying series of actions to try to reason
about exception handling at a broader level than individual
catch blocks. We suggest tool designers leverage these shared
practices to offer programmers better suggestions or auto-
complete for handler policies, e.g. always log when catching a
certain kind of exception. Improved support may nudge pro-
grammers away from leaving empty catch blocks or ones that
swallow exceptions.

4.3 Distribution of Exceptions Caught
Before handling exceptions, a programmer must decide which to
catch. Given that programmers frequently take actions to dismiss
exceptions, like only logging, returning, printing, or doing noth-
ing, it is important that these decisions do not underestimate the
risk that an exception may have on program state. We investigated
another major bad practice: catching Java’s top level Excep-
tion or Throwable. The danger in catching Exception is
that while a programmer may be considering a simple local fail-
ure, the catch block will capture all checked exceptions that
reach that program point. Catching Throwable causes the catch
block to also handle runtime exceptions, including major system
failures like OutOfMemoryException.

As shown in Figure 3, Exception and Throwable are both
caught very often. Exception is a full 26% of all exceptions

Figure 3: Exceptions caught by catch blocks on GitHub. Exceptions that occur more than 1% of the time are labeled. The rest,
in purple, are thousands of exceptions that only rarely occur.

Figure 2: Kinds of statements in a catch block by the catch
block's size.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

#S
ta
te
m
en

ts
 in

 c
at
ch

 b
lo
ck

Print Log Other Method Call

Return Throw Terminate

Control Flow Nested Try/Catch

486486486486

caught. To gain a sense of this usage, we manually examined a
sample of 50 handlers that catch Exception. The most recur-
ring program situation was contacting a web server or database
and using Exception to cover any failures. Another pattern was
catching Exception in the very last catch in a series of catch
blocks, to cover any remaining unhandled errors. Many other
examples used Exception to cover a specific failure, where a
specific exception likely could have been used.

We propose several possible reasons for this catch-everything
behavior. First, as shown in Figure 3, there are a few exceptions
that are routine like IOException, which is typical for any I/O
operations, or InterruptedException, which is typical for
dealing with threads. Otherwise, given the diversity of thousands
of highly specific and rarely occurring exceptions (purple in Fig-
ure 3), a programmer is faced with understanding the implications
of exception classes they may rarely ever encounter. Some IDEs
like Eclipse will auto-fill a catch with the correct exception
classes thrown from a try. However Exception remains sim-
ple to remember and covers any failure.

A related explanation is that Exception is also a simple “um-
brella” alternative for catching multiple exceptions. Our AST
dataset was limited in that we cannot easily determine which ex-
ceptions are possible in a given try block. Thus, we explored this
question in a limited way by looking at the occurrence of pro-
grammers catching multiple exceptions for a single try block. To
catch multiple exceptions, the programmer has a choice: assign
multiple catch blocks to the try to handle each separately, or
handle multiple exceptions in the same catch by separating them
with a ‘|’. The second option avoids redundant handler code, but is
an addition since Java SE 7 in 2011 [11]. It is still rare, occurring
in only 0.2% of catch blocks, so we hypothesize that some behav-
ior catching Exception or duplicating catch blocks may be
older, more familiar work-arounds for handling several exceptions
in the same way. Most try/catch structures are one try per
catch, but in 12% of catch blocks we observed more than one
catch block in sequence, to handle exceptions separately.

We suggest tool support can help programmers choose what is
appropriate to catch, and also appropriately group multiple excep-
tions. An issue arising with multiple exceptions is that they can be
split into catch blocks differently by inheritance (e.g. all I/O child
exceptions under IOException) or loosely split by the line in
try that originally failed. Understanding failure by each line may
often make sense, but is currently ambiguous for the programmer.
Catching RemoteException, for example, has no obvious
reference to which program statement caused it, without consult-
ing documentation. Making this relationship between statements
and their exceptions more visible with tools may help program-
mers avoid “umbrella” catches like Exception.

4.4 Local Throws
We have so far discussed the content of catch blocks, and the
exceptions covered by them. A minority of try blocks result in
an exception being propagated forward. In 14% of try, an excep-
tion is implicitly thrown by declaring it in the method signature
only. In another 24% of try, an exception is thrown by method
declarations mixed with explicit throws in catch blocks. Explicit
throws are a surprising case of very positive programmer behav-
ior. In 80% of cases, programmers re-cast exceptions before
throwing, a practice recommended for better security to hide im-
plementation details and maintain an appropriate abstraction [12].

Popular exceptions that programmers re-cast to are related to in-
forming the caller of bad input: IllegalArgumentExcep-
tion, or AssertionError.

One caveat is that re-casting to RuntimeException is also
common and is used by a fifth of re-casts. This abstracts away the
real cause of an exception but gives callers no information about
the failure. Catching RuntimeException can be something
else entirely: a way to circumvent the Java checked exception
system by misusing unchecked runtime exceptions [11].

5. CONCLUSION
We have demonstrated, through a large-scale analysis of
try/catch blocks on GitHub, typical practices programmers use
to handle exceptions. Future work will investigate leveraging the
prevalence of common error handling actions for support tools to
help suggest more positive handling policies to programmers.

6. ACKNOWLEGEMENTS
This research was funded in part by the NSF under grants CNS-
1423054 and IIS-1314356 and the Air Force under Contract
#FA8750-15-2-0075. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the au-
thors and do not necessarily reflect those of the US Government.

6. REFERENCES
[1] R Dyer, H A Nguyen, H Rajan, and T N Nguyen. 2013. Boa:

a language and infrastructure for analyzing ultra-large-scale
software repositories. ICSE: 422–431.

[2] H B Shah, C Gorg, and M J Harrold. 2010. Understanding
Exception Handling: Viewpoints of Novices and Experts.
IEEE Transactions on Software Engineering 36, 2: 150–161.

[3] F Ebert and F Castor. 2013. A Study on Developers' Percep-
tions about Exception Handling Bugs. 2013 ICSM: 448–451.

[4] B Cabral and P Marques. 2007. Exception Handling: A Field
Study in Java and .NET. ECOOP 4609, Chapter 8: 151–175.

[5] D Malayeri and J Aldrich. 2006. Practical Exception Specifi-
cations. Advanced Topics in Exception Handling Techniques
4119, Chapter 11: 200–220.

[6] H Shah, C Görg, and M J Harrold. 2008. Visualization of
exception handling constructs to support program under-
standing. ACM, New York, New York, USA.

[7] J Goodenough. 1975. Exception handling: issues and a pro-
posed notation. Communications of the ACM 18, 12: 683–
696.

[8] IBM “Best Practice: Catching and re-throwing Java Excep-
tions” 01.ibm.com/support/docview.wss?uid=swg21386753

[9] B Goetz “Java theory and practice: The exceptions debate”
www.ibm.com/developerworks/library/j-jtp05254/

[10] M Gabel and Z Su. 2010. A study of the uniqueness of
source code. SIGSOFT FSE: 147–156.

[11] “Catching Multiple Exception Types and Rethrowing Excep-
tions with Improved Type Checking”
docs.oracle.com/javase/7/docs/technotes/guides/language/cat
ch-multiple.html

[12] “Secure Coding Guidelines for Java SE”
www.oracle.com/technetwork/java/seccodeguide-
139067.html

487487487487

