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Abstract—With the growth of the open-source data science
community, both the number of data science libraries and the
number of versions for the same library are increasing rapidly.
To match the evolving APIs from those libraries, open-source
organizations often have to exert manual effort to refactor the
APIs used in the code base. Moreover, due to the abundance of
similar open-source libraries, data scientists working on a certain
application may have an abundance of libraries to choose, main-
tain and migrate between. The manual refactoring between APIs
is a tedious and error-prone task. Although recent research efforts
were made on performing automatic API refactoring between
different languages, previous work relies on statistical learning
with collected pairwise training data for the API matching and
migration. Using large statistical data for refactoring is not ideal
because such training data will not be available for a new library
or a new version of the same library. We introduce Synthesis for
Open-Source API Refactoring (SOAR), a novel technique that
requires no training data to achieve API migration and refac-
toring. SOAR relies only on the documentation that is readily
available at the release of the library to learn API representations
and mapping between libraries. Using program synthesis, SOAR
automatically computes the correct configuration of arguments
to the APIs and any glue code that is required to invoke those
APIs. SOAR also uses the error messages from the interpreter
when running refactored code to generate logical constraints
that can be used to prune the search space. Our empirical
evaluation shows that SOAR can successfully refactor 80% of
our benchmarks, corresponding to deep learning models with
up to 44 layers, with an average run time of 97.23 seconds,
and 90%of the benchmark set for data wrangling tasks with an
average run time of 17.31 seconds.

Index Terms—software maintenance, program translation,
program synthesis

I. INTRODUCTION

Modern software development makes heavy use of li-
braries, frameworks, and associated application programming
interfaces (APIs). Libraries provide modular functionality in-
tended for reuse, with prescribing a particular architecture [1]],
and their widespread use has important productivity advan-
tages [2]. The API for a library defines the interface, or
contract, between the (hidden) library implementation of a
piece of library functionality, and its client component [3].
Good API selection and maintenance is a key component of
modern software engineering [4].

Although ideally API selection and usage could be stable
over the course of a software project’s lifetime, there are many
practical reasons that client code must update the way it uses
a given API, or even which API/library it uses for a given
set of functionality. Broadly, software may evolve because
of a change in the code, the documentation, its properties,
or the customer-experienced functionality [5]]. The APIs used

by the software can become invalid or inapplicable as the
software evolves. APIs themselves may become deprecated
or obsolete [6]. As a result, to maintain and optimize software
that depends on APIs, developers often have to refactor
APIs between different versions, or to another API (i.e., API
migration) altogether.

API migration is a form of software refactoring, a critical
software engineering activity that is largely performed man-
ually [7] and is tedious and often error-prone [8]. Migration
can be difficult even when migrating between two closely-
related APIs that nominally provide the same functionality.
For example, consider increasingly popular data science and
deep learning libraries, such as TensorFlow [9]], PyTorch [10],
and Numpy [11]. Moving between two such libraries often
requires significant manual labor as well as domain- and
library-specific knowledge (we illustrate with an example in
Section @); worse, APIs can change, and outdated historical
knowledge can exacerbate these challenges.

Fortunately, many popular APIs possess key properties that
can inform an automated approach to support migration or
evolution. First, open-source APIs are often reasonably well-
documented [12]. The quality, quantity, and structure of that
documentation can vary widely [13]], but as code intended
to be called and reused by unrelated client applications,
documentation is often key to successful API uptake [13].
Second, unsuccessful API methods often raise exceptions
with informative error messages, that developers can use to
access stack traces and information that can help them modify
a program [14]. We observe that data science API error
messages are particularly useful as these error messages often
identify how the input data relates to the raised exception. Take
for example “Error in fit[5, 100]: subscript out of bounds”,
which is an error message describing an index overflow. From
the example error message, we know that either 5 or 100 is
out of bounds for the input matrix. Third, although multiple
APIs may vary in concrete implementation details, by virtue of
solving the same general sets of problems, it is often possible
to discretely map between pieces of functionality in each of a
source and target APIL.

We propose SOAR (Synthesis for Open-source API Refac-
toring), a novel approach that combines natural language
processing (NLP) with inductive program synthesis [15] to
automatically migrate/refactor between APIs. We focus our
approach and evaluation on deep learning and data science
APIs. Since there are many APIs targeting these domains,
changes and new releases are introduced rapidly (as one
example, TensorFlow had 26 releases in 2019 alone), and



switching between them is common and often tricky [16].
Moreover, data scientists and other users of such libraries
have broad backgrounds and are not always classically trained
programmers, and thus could particularly benefit from tool
support to assist them in these tasks [8]]. However, we be-
lieve the approach will generalize to other APIs with similar
properties (see detailed discussion in Section [[V).

Given a program that uses a given source API, SOAR’s
central proposition is to use NLP models learned over available
API documentation and error messages to inform program
synthesis to replace all source API calls with corresponding
calls taken from the target API. SOAR starts by using existing
documentation for the source and target libraries to build an
API matching model, which finds likely replacement calls for
each API call in the source program.

However, simply finding the right function in the corre-
sponding target API is not enough, since the new function
must be called with the correct arguments, and function spec-
ifications may vary between libraries. SOAR uses inductive
program synthesis to construct the full target method call in a
way that replicates the original source behavior. This synthesis
step may be further informed by specifications inferred, again,
from the API documentation. During the program synthesis
enumeration procedure, a potential migrated call may throw
an error when tested. In these situations, SOAR uses an error
message understanding model that again uses NLP techniques
to analyze error messages and generate logical constraints to
prune the search space of the synthesis task.

To the best of our knowledge, SOAR is the first refactoring
tool that incorporates program synthesis and machine learning
tools for refactoring, and is a significant improvement over
the prior state of the art. SOAR maps programs between
different APIs using only readily-available documentation.
It does not require manual migration mappings [17] or a
history of previous migrations or refactorings in other software
projects [18]—[21]]. Indeed, SOAR does not require training
data at all, and is thus applicable for migrations to a new
library or newer version of the same library shortly after
release. We demonstrate that SOAR is versatile in Section [[V]
using it to migrate between two deep learning libraries (i.e.,
TensorFlow to PyTorch) in the same programming language
(i.e., Python) and between two data manipulation libraries (i.e.,
dplyr to pandas) in two different programming languages (i.e.,
R and Python). Prior techniques either specialize exclusively
in supporting cross-language migration (e.g., StaMiner [19]),
or do not support it at all. Because SOAR uses synthesis, when
it succeeds the produced code is guaranteed to compile and
pass existing test cases for the original source code.

In summary, our main contributions are:

1) We propose SOAR, a novel approach based on NLP and
synthesis for automatic API refactoring, focusing on (but
not limited to) deep learning and data science tasks.

2) SOAR requires no training data, and its output is guar-
anteed to compile and pass existing test cases. Instead of
using training data from prior programs, SOAR leverages
API documentation and program error messages to gener-

s N
1 ! import tensorflow.keras.layers as tf |1 | import torch
2. 2 ..
41 A|l39
42| self.convl = tf.Conv2D( 46{selfvar0 = torch.nn.Conv2d(
filters=32, in_channels=32,
kernel_size=3, out_channels=32,
strides=(2, 2)) kernel_size=(3, 3),
43 ... B stride=(2, 2),
48[ self.densel = tf.Dense(10) padding=(0, 0))
49 self.dense2 = tf.Dense(1568 41 booo
50 4... C 51![selfvar5 = torch.nn.Linear(64 , 10)
55 self.deconvl = tf.Conv2DTranspose(| {52 |self.var6 = torch.nn.Linear(10, 1568)
filters=64, 53i....
kernel_size=3, 571selfvar8 = lambda t: t.permute(0, 3, 1, 2)
L strides=2) 58i/selfvar9 = torch.nn.ConvTranspose2d(
56 .... ] D in_channels=32,
63| self.relu6 = tf.ReLU() B out_channels=64,
kernel_size=(3, 3),
stride=(2, 2),
padding=(0, 0))
5% ...
L 62 ]self.var13 = torch.nn.ReLU()

Fig. 1: An example of how SOAR refactors a program written
with TensorFlow (left) to using PyTorch (right). Note that the whole
program consists of 15 APIs calls to TensorFlow, though we only
show four blocks of them (i.e., A, B, C and D) for brevity. SOAR
can migrate the full program in 161 seconds.

ate logical constraints to prune the program enumeration
search space.

3) We evaluate SOAR on two library migration tasks (i.e.,
TensorFlow to PyTorch and dplyr to pandas) to demon-
strate its effectiveness. Our results show that SOAR can
successfully migrate 80% of neural network programs
composed by 3 to 44 layers in with an average time of
97.23 seconds. And for dplyr to pandas migration, 90%
of benchmarks are solved on average in 17.31 seconds.

4) With ablation studies, we also evaluate how each part of
SOAR impacts its performance. We show that the use
of specifications from API documents and learning from
error messages are largely helpful for the synthesis pro-
cess. We also show how different API matching methods
perform on the two migration tasks.

5) We release the SOAR implementation for the two migra-
tion tasks mentioned above. We also release the docu-
mentation and benchmark tests we use in this work to
facilitate future research on this direction.

The remainder of this paper is organized as follows: Sec-
tion [lI] presents a motivating example that illustrates the chal-
lenges of manual API refactoring. In section we describe
our approach to automatic API migration. Section [[V] presents
our empirical evaluation and analysis of results. Next, we
discuss our current approach and limitations in section
Finally, we conclude with an overview of related work in
section [VIl and conclusions in section

II. MOTIVATING EXAMPLE

We illustrate some of the difficulties of manual API refac-
toring via example. Consider the TensorFlow code snippet on
the left-hand-side of Figure |I| The program being refactored



shows an autoencoder program [22] written using the Tensor-
Flow API; the goal is to migrate this code to use the PyTorch
APIL. An autoencoder is a type of neural network that is trained
to copy its input to its output. Specifically in this example, the
autoencoder tries to compress an image with an encoder and
then the decoder will try to restore the original image.

The example in Figure [I] shows only a portion of the
program, for didactic purposes. To build the first layer of
the encoder, function conv2p is called, which constructs a
convolution layer that can be applied to 2D images. After
further (elided) activation and convolution layers, it calls
Dense to output a latent representation of the input image.
Decoding this output follows roughly the same procedure as
the encoding, but using conv2DTranspose instead of conv2p.
The function reLu appears in both the encoder (not shown)
and decoder, initializes a type of activation layer to ensure
non-linearity of the neural network.

The example of deep learning library code and transla-
tion in Figure || illustrates several of the core challenges
in refactoring open-source APIs, as well as opportunities to
inform an automated approach. First, the names of function
calls implementing similar functionality may be very similar
or even identical (such as those in blocks A, C, and D),
or completely different (e.g., Dense versus Linear in block
B). If a developer were performing this migration manually,
they might reference the API documentation. For example,
the TensorFlow documentation describes the conv2p class
as a ‘“2D convolution layer (e.g., spatial convolution over
images)” [23]]; the corresponding PyTorch documentation for
the conv2d call describes it similarly, as a “2D convolution
over an input signal composed of several input planes” [24].
Here, the function names map well, but when this does not
happen, it is more challenging to connect the documentation.

Even when we know which function to use, however, calls
that implement the same functionality can require different
types, parameters, parameter names, and even the parameter
values may be different between them. This is true for the
majority of the calls in our example (see those in blocks
A, B, and C). Note for example that the conv2p functions
take different parameters in each of the two libraries. There
is overlap between them — both include kernel_size, and
stride and strides clearly correspond — but even the in-
common parameters are not in the same argument position
between the two calls (strides is the third parameter in
TensorFlow but stride is the fourth in PyTorch). Sometimes,
some or all of the arguments to a call in the source API can
be copied directly to the call in the target API (see the calls in
blocks A, C); other times, correct arguments must be inferred
(such as the first parameter to Linear in block B). Finally,
in other situations, no single function in the target API can
match the semantics of a call from the source API, requiring
instead a one-to-many mapping (as we see in converting the
Conv2DTranspose call in block C)

In the next section, we show how SOAR addresses these
challenges with each of its components.

Algorithm 1 SYNTHESIZER(Z, S, T,C)

Input: 7: existing program, S: source library, 7 target li-
brary, C: test cases
Output: O: refactored program
: ¥ : API mapping = MAPAPI(T,S)
:0={}

1
2
3: for each [ € 7 do
4
5

O = O UREFACTORLINE(L, T, C, 7)
: end for

III. REFACTORING ALGORITHM

This section describes SOAR, our approach for automatic
API migration. We begin with a high-level overview of the
method (Section [[II-A)) before providing more detail on indi-

vidual components (Section [[II-B} [[TI-C} [I-D}.

A. Overview

Figure[2shows an overview of the SOAR architecture, while
Algorithm [I] provides an algorithmic view. SOAR takes as
input a program Z consisting of a sequence of API calls from
a source library S, the source (S) and target (7) libraries and
their corresponding documention, and a set of existing test
cases (C). Since the user wants to refactor code from S to 7,
we assume that the user already has test cases for Z that can
be reused to check if the refactored code () has the same
functional behavior has the original code (Z). Refactoring
proceeds one line at a time in Z, finding/constructing an
equivalent snippet of code (composed by one or more lines)
that uses APIs of the target library 7 ; the composition of all
these translated lines comprises the output O.

For each API call in the input program, the first problem
either a developer or a tool must face is to identify methods
in the target API that implement the same functionality (i.e.,
for a given set of input parameters, the target API call must
generate the same output). SOAR uses an API matching model
to identify target API calls. This model is built using NLP
techniques that analyze the provided API documentation for
each call, and provides a mapping (7 in Algorithm [1)) that
computes the similarity between each target API function and
each potential source API function. SOAR uses this to find the
most likely replacement methods in the target API for each
source API call in the input program. We provide additional
detail in Section [II-Bl

Given a potential match call in the target API, the next
step is to determine how to call it, in terms of providing
the correct parameters, in the correct order, of the correct
type. SOAR uses program synthesis to automatically write
the refactored API call, using the provided test cases to
define the expected behavior of the synthesized code and its
constituent parts. The synthesis process can be assisted with
additional automated analysis of API documentation, which
often provides key information about each parameter, namely
(1) whether it is required or optional, (2) its type, (3) its default
value (if applicable), and (4) constraints between arguments,
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self.densel = tf.Dense(10) ‘ ‘ torch.to_dense(#0) ‘

torch.nn.Linear(in_features=10,
out_features =-1)

AssertionError: “out_features”
must be a positive number.

in_features=64,

torch.nn.Linear: #1 >0 ‘

4 = selfdenset forward(x) [ torch.nn.Linear(#0, #1, #2, #3) |
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Interpreter
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Fig. 2: Overview of SOAR’s architecture.

Parameters

® in_channels (int) - Number of channels in the input image

® out_channels (int) - Number of channels produced by the convolution

® kernel_size (int or tuple) - Size of the convolving kernel

e stride (int or tuple, optional) - Stride of the convolution. Default: 1

® padding (int or tuple, optional) - Zero-padding added to both sides of the input. Default: 0

o padding_mode (string, optional) - 'zeros', 'reflect', 'replicate' or 'circular'.Default: 'zeros'
e dilation (int or tuple, optional) - Spacing between kernel elements. Default: 1

® groups (int, optional) - Number of blocked connections from input channels to output channels. Default: 1

® bias (bool, optional) - If True,adds a learnable bias to the output. Default: True

Fig. 3: Description of the program parameters in torch.nn.Conv2d
documentation [24]).

input and output (e.g., input and output tensor shapes). Fig-
ure (3| shows a snippet of the descriptions of all parameters
for torch.nn.conv2d. For example, the parameter stride i
optional; it takes type int or tuple, and its default value is 1.
Analysis of this documentation can produce a specification
constraint for the stride parameter, assisting the program
synthesis task. Section describes the synthesis step.

Given a potential rewrite in the target API, a natural step
for a developer would be to run the refactored code on test
inputs. Unsuccessful runs can be quite informative, because
many APIs (especially in the deep learning and data science
domains) provide error messages that can be very helpful for
debugging. SOAR simulates the manual debugging process
by first adapting the input whole-program test cases to test
partially refactored code, and then extracting both syntactic
and semantic information from any error messages observed
when running them. SOAR uses this information to add new
constraints to the iterative synthesis process (Section [[II-D).

After migrating all calls in the source API to the target API
such that all input tests pass, SOAR outputs a fully refactored
program. Subsequent sections provide additional detail on the
previously described steps.

B. API Representation Learning and Matching

The first step in migrating a call in a source API is to
identify candidate replacement calls in the target API with
similar semantics. The API matching model supports this task
by analyzing the prose documentation associated with each
call in each API, and computing similarity scores between all
API pairs. At a high level, this model embeds each API method
call in a source and target library into the same continuous

high-dimensional space, and then computes similarity between
two calls in terms of the distance between them in that space.
We explored two ways on obtaining API representation: TF-
IDF (term frequency — inverse document frequency) [25] and
pretrained word embeddings [26].

TF-IDFE. The intuition behind TF-IDF is to find the most
representative words rather than the most frequent words in
a sentence. Normalizing by the inverse-document-frequency
lowers the weights of common keywords that are less informa-
tive, such as rorch, tensorflow and those stop words in natural
language such as the or this.

Specifically, we first derive a bag-of-words representation x'
from a description of an API call after some stemming of the
words with the Snowball Stemmer [27]. x! = [2%, 2%, ..., 2% ]
where a:; denotes the frequency with which word z; appeared
in the sentence x', and n is the size of the vocabulary from
the descriptions of all APIs we are trying to embed. A TF-IDF
representation of the call is computed as Equation [T}

2
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However, the major downside of TF-IDF is that it does not
encode the similarities between words themselves. For exam-
ple, consider two hypothetical call descriptions: (1) Remove
the last item of the collection, and (2) Delete one element
from the end of the list. They are semantically similar but since
they have minimal overlapping words, a TF-IDF representation
method would not recognize these two API calls as similar.

Tfidf-GloVe. We can fix this problem by adding the use of
pretrained word embeddings. Specifically, we use the GloVe
embedding [26], which is trained on a very large natural
language corpus and learns to embed similar words closer in
the embedding space.

To obtain sentence embeddings from individual words, we
perform a weighted average of the word embeddings and use
the TF-IDF scores of individual words as weight factors. It is
a simple yet effective method to obtain sentence embedding
for downstream tasks, as noted by previous work [28], [29].
This is shown in detail as Equation |2, where wj is the vector
encoding the GloVe embedding of word x;:

TF-IDF(x') = |

I M

Embedding(x) = S~ 2 W
mbedding(x') = =m 7 ()



Algorithm 2 REFACTORLINE(l, T,C, 7)

Input: [: line of code from Z, 7 target library, C: test cases,
7+ ranked list of API matchings
Output: R: refactored snippet
1. O= {}
2: for each I’ € ¥ do
3: § = GENERATESKETCHES(l', T)

4: for each s € s do

5: R = FILLSKETCH(s)

6: if PASSTESTS(R,C) then
7: return R

8: end if

9: end for

10: end for

By including the GloVe embedding, word similarity is
preserved; by including the TF-IDF terms, the influence of
embeddings of common words is greatly reduced. However,
GloVe is trained with Common Crawl [30|] which contains raw
webpages, which is a mismatch from our domain of textual
data (i.e., data science and programming). This causes a lot of
OOV (out-of-vocabulary) problems.

API matching. Given the representation of two APIs Rep(x?),
Rep(x/) in the same space Rep(-), we compute their similarity
with cosine distance:
sim(Rep(x*), Rep(x?)) = Rep(x/l) -Rep(xj') 3)
[Rep(x?)|[Rep(x/)]

For computational efficiency, we pre-compute the similarity
matrix between the APIs across the source and target library.
So we will be able to query the most similar API for the
synthesizer to synthesize its parameters on the fly.

C. Program Synthesis

Given the input test cases and the API matching model
providing a ranked list ¥ of APIs in the target library, the
synthesis model automatically constructs new, equivalent code,
of one or more lines, that uses APIs of the target library 7.
The refactored program O has the same functionality as input
program Z, and passes the same set of tests C.

To refactor each line of the existing program Z, we use
techniques of programming-by-example (PBE) synthesis [31]].
PBE is a common approach for program synthesis, where
the synthesizer takes as specification a set of input-output
examples and automatically finds a program that satisfies those
examples. In the context of program refactoring, our examples
correspond to the test cases for the existing code. In this paper,
we restrict ourselves to straight-line code where each line
returns an object that can be tested. With these assumptions,
we can automatically generate new test cases for each line k
of program Z. This can be done by using the input of the
existing tests, running them, and using the output of line k as
a new test case for the program composed by lines 1 to k.

Our program synthesizer for refactoring of APIs is presented
in Algorithm |2 and it is based on two main ideas: (i) program

sketching, and (ii) program enumeration. For each line [
in program Z, we start by enumerating a program sketch
(i.e., program with holes) using APIs from the target library
T (line [3). For each program sketch, we perform program
enumeration on the possible completion of the API parameters
(line [3). For each complete program, we run the test cases for
the program up to line [. If all test cases succeed, then we
found a correct mapping for line [ between libraries S and
T (line [6). Otherwise, we continue until we find a complete
program that passes all test cases.

Program Sketching. Program sketching is a well-known
technique for program synthesis [32] where the programmer
provides a sketch of a program and the program synthesizer
automatically fills the holes in this sketch such that it satisfies a
given specification. We refactor one line of program Z at each
time. Our first step is to use the ranked list of APIs to create
a program sketch where the parameters are unknown. For
instance, consider the first layer from the motivating example
that shows the network for an autoencoder using TensorFlow:
tf.keras.layers.Conv2D

(filters=32,

A possible sketch for this call using PyTorch is:
torch.nn.Conv2d
(#1,#2, (#3,#4),stride= (#5, #6) ,padding= (#7, #8))

Where holes #i have to be filled with a specific value for
the APIs to be equivalent. This approach works for one-to-one
mappings but would not support common one-to-many map-
pings where the parameters often need to be transformed be-
fore being used in the new API. This is the case of the previous
API where a reshaping operation must be performed before
calling the PyTorch API. To support this common behavior,
we include in our program sketch one API from the target
library 7" and common reshaping APIs (e.g., permute, long).

The sketch that corresponds to the refactoring solution of
the conv2p API from TensorFlow uses a reshaping API before
calling the conv2d API from PyTorch:
x.permute (#9, #10, #11, #12)
torch.nn.Conv2d
(#1,42, (#3,#4), stride=(#5,#6),padding=(#7,#8))

Using Occam’s razor principle, our program synthesizer
enumerates program sketches of size 1 and iteratively increases
the size of the synthesized program up to a specified limit.

kernel_size=3,strides=(2, 2))

lambda x:

Program Enumeration. For each program sketch P, our
program synthesizer enumerates all possible completions for
each hole. Since each hole has a given type, we only want to
enumerate well-typed programs. We encode the enumeration
of well-typed programs into a Satisfiability Modulo Theories
(SMT) problem using a combination of Boolean logic and
Linear Integer Arithmetic (LIA). This encoding is similar to
other approaches that use SMT-based enumeration for program
synthesis [33]], [34]] and encodes the following properties:

« Each hole contains exactly one parameter;

« Each hole only contains parameters of the correct type.

A satisfying assignment to the SMT formula can be trans-
lated into a complete program. The types for each hole can be



Shape:

e input: (N, Ciy, Hin, Wiy)
o output: (N, Cout, Hout, Wous) where

{Hm + 2 x padding|0] — dilation|0] x (kernel_size[0] — 1) — 1 J
How = +1

stride[0]
W Wi, + 2 x padding[1] — dilation[1] X (kernel size[l] — 1) —1 +1
o stride[1]

Fig. 4: Relationship between the parameters of Conv2d API de-
scribed in PyTorch documentation [24].

determined by extracting this information from documentation,
by performing static analysis, or by having this information
manually annotated in the APIs. The available parameters and
their respective types can be extracted automatically from the
parameters used in the k-th line of program Z and by any
default parameters that can be used in the API from 7 that
appears in the program sketch P. For instance, for the conv2d
example presented in this section, we consider as possible
values for the holes, the values that appear in the existing code
(32, 3, 2) and default values for integer parameters (-1, O, 1,
2, 3) that are automatically extracted from documentation.

Encoding the enumeration of well-typed programs in SMT
has the advantage of making it easier to add additional logical
constraints that can prune the search space.

Specification Constraints. As we described in Section [[II-A]
API documentation often provides additional useful informa-
tion about parameters to function calls, including type and
default values. For each considered API call, we scrape/pro-
cess the associated documentation to extract these properties
and encode them as SMT constraints to further limit the
synthesizer search space.

Additionally, some APIs have complex relationships be-
tween parameters which if encoded into SMT may reduce the
search space considerably. For instance, Figure [] shows the
relationship between the different parameters for the conv2d
API described in PyTorch documentation. For APIs with these
kinds of shape constraints, we can encode these relationships
into SMT to further prune the number of feasible completions.
When we use these relationships in our experiments, we
encode them manually (a one-time cost for an actual SOAR
user or API maintainer), but we observe that in many cases
they could be automatically extracted from documentation.

Besides these specification constraints, we can also further
prune the search space by using the error messages provided
by the Python interpreter, as we discuss in the next section.

D. Error Message Understanding

We use a combination of extracting hyponymy relations
and Word2vec [35] to understand run-time error messages. As
outlined in Figure [5] our SMT constraint generation method
consists of three steps.

Step 1: Extract hyponymy relation candidates from error
messages. We perform an automatic extraction of customized
hyponyms on each error message. Hyponyms are specific
lexical relations that are expressed in well-known ways [36].

[ torch.nn.Conv2d(-2,40,(3,3),stride=(1,1),padding=(0,0)) ]

l Compile program and generate error message

[ Trying to create tensor with negative dimension -2: [40, -2, 3, 3] ] R

l Step 1. Collect candidate faulty parameters and fault causes

POS =NN POS =
| |

|
Trying to create tensor with negative dimension -2: [40, -2, 3, 3]

Target Param

Hyponym 1

l Step 2. Match candidate faulty parameter with program parameters

['in_channels=-2', 'out_channels=40', 'kernel_size=(3,3)',
'stride=(1,1)", 'padding=(0,0)']

l Step 3. Mutate program If fail

[self.varS = torch.nn.Convzd(1,40,(3,3),stride=(1,1),padding=(0,0))] —

l If pass: generate SMT constraint

[ in_channels >0 ]

Fig. 5: Example error message to SMT constraint pipeline using
hyponym 1.

In encoding a set of lexico-syntactic patterns that are easily
recognizable (i.e., hyponyms), we avoid the necessity for
semantic extraction of a wide-range of error message text. We
then use the collected hyponyms to map the error message to
a single faulty parameter, and output a SMT constraint based
on the faulty parameter.

Prior work on text parsing uses Tregex, which is a utility
developed by Levy and Andrew for matching patterns in
constituent trees [37]]. For example, Evans et al. evaluated the
performance of Tregex on privacy policies [38]. However, DL
API compilation error messages are domain specific. Sumida
et al. used the hierarchical layout of Wikipedia articles to
identify hyponymy relations [39]]. Similarly to Wikipedia doc-
uments, DL API compilation error messages are more consis-
tent and organized than normal, natural language, documents.
Therefore, we follow the approach of extracting hyponymy
relations based on the hierarchical layout of a string.

We propose a set of four lexico-syntatic patterns to identify
hyponyms using noun-phrases (NP) and regular expressions
frequently appearing in machine learning API error messages.
Table |I| shows the four hyponyms. If we identify any of the
four lexico-syntatic patterns within an error message, we tag
the error message with a hyponym type. As shown in Figure
[l we identify hyponym 1 in error message “Trying to create
tensor with negative dimension...”.

Step 2: Identify candidate faulty parameters and con-
straints. Step 2 uses different keywords based on the result
of step 1 to identify the faulty parameter. As shown in Figure
[l an error message with hyponym 1 is likely to have the
POS=JJ word as a parameter constraint (i.e., word “negative”).
Based on the fault cause candidate, we then store all negative
numbers as candidate faulty parameters (e.g., [40, -2, 3, 3]
has -2 as the only faulty parameter). We then vectorize the
candidate faulty parameter name (i.e., -2) and find the program
parameter name with the closest vectorized distance. As shown



TABLE I: The four hyponyms in the error message understanding model

Type NP Example error messages Identified hyponym

1 {{Noun) * (Preposition)(Adjective)?{Noun)} ‘Trying to create tensor with negative  tensor with negative dimension
dimension -1: [-1, 100, -1, -1]

2 {{Noun)(Cardinal_number)} ‘embedding(): argument weight (posi-  position 1
tion 1) must be Tensor, not int’

3 {{Coordinating_conjunction)(Verb)(Adjective)(Noun)}  ‘Expected 3-dimensional input for 3-  but got 4-dimensional input
dimensional weight [2, 2, 3], but got 4-
dimensional input of size [100, 50, 40,
1] instead’

4 {{(Verb)(Adverb)(Verb_past_participle)} ‘non-positive stride is not supported’ is not supported

in Figure [5 the parameter “in_channels —2” has the
nearest vectorized distance to the candidate faulty parameter -
2. Based on the fault cause, we generate a candidate constraint.
The example error message in Figure 5| has only one candidate
constraint: “in_channels >= 0.

Step 3: Mutate program. To validate the candidate faulty
parameters and constraints, we mutate each faulty parameter
according to each faulty parameter and constraints pair. We
then re-compile the program for each mutation. If the error
message remains the same, we discard the faulty parameter
and constraint pair as a candidate. If the program passes, or
if the error message changes, we store the faulty parameter
and constraint pair as an SMT constraint. As shown in
Figure [5] the API call mutator mutates the second parame-
ter (“in_channels —27”) to a non-negative number. The
mutator first attempts “in_channels = 07 and it encounters
a different error message. From the new error message, we
mutate this parameter to “in_channels = 1” and observe no
further errors. Therefore, we refine our previous constraint to
be “in_channels > 07, and store it as the final SMT constraint
for the program in Figure [5

IV. EVALUATION

We evaluate our approach by answering the following
research questions:

Q1. How effective is SOAR at migrating neural network
programs between different libraries?

How does each component of SOAR impact its perfo-
mance?

Is SOAR generalizable to domains besides deep learning

library migration?

Q2.
Q3.

A. Benchmarks and experimental setup

We collected 20 benchmarks for each of the two migration
tasks. In particular, for the TensorFlow to PyTorch task,
we gathered 20 neural network programs from tensorflow
tutorials [40], off-the-shelf models implemented with Tensor-
Flow [41] or its model zoo [42]. This set of benchmarks
includes: Autoencoders for image and textual data, classic
feed-forward image classification networks (i.e., the VGG
family, AlexNet, LeNet, etc), convolutional network for text,
among others. The average number of layers in our benchmark
set is 11.80 £ 11.52, whereas the median is 8. Our largest
benchmark is the VGG19 network which contains 44 layers.

For the domain of table transformations, we collected 20
benchmarks from Kaggle [43], a popular website for data
science. The programs in the benchmark set have an average
of 3.05 £ 1.07 lines of code, and a median of 3 lines.
Although the programs considered for this task are relatively
small compared to the deep learning benchmarks, they are
still relevant for data wrangling tasks as shown by previous
program synthesis approaches [44].

All results presented in this section were obtained using an
Intel(R) Xeon(R) CPU ES5-2630 v2 @ 2.60GHz, with 64GB
of RAM, running Debian GNU/Linux 10, and a time limit
of 3600 seconds. To evaluate the impact of each component
in SOAR, we run four versions of the tool. SOAR with TF-
IDF (SOAR w/ TF-IDF) and SOAR with tfidf-GloVe (SOAR
w/ Tfidf-GloVe) to evaluate the impact of API representation
learning methods. SOAR without specification constraints
(SOAR w/o Specs.) and SOAR without error message under-
standing (SOAR w/o Err. Msg.) to evaluate the impact of these
components on the performance of SOAR.

B. Implementation

The SOAR implementation integrates several technologies.
Scrapy [45], a Python web-scraping framework, is used to
collect documentation for the four libraries in our experiments.
To enumerate programs in the synthesis step, we use the Z3
SMT solver [46]. For each target program call parameter, we
extract an answer for the four parameter questions in Section
III-A| and generate corresponding SMT constraints. In both
API matching model and the error message understanding
model, the GloVe word embeddings [26] are used as an
off-the-shelf representation of words. For the four libraries
appearing in our two evaluation migration tasks, we use
TensorFlow 2.0.0, PyTorch 1.4.0, dplyr 1.0.1 (with R 4.0.0)
and pandas 1.0.1, though our proposed method and associated
implementation do not rely on specific versions. We provided
anonymized code and data to support reviewﬂ and we will
provide a full, unblinded replication package post-review.

C. QI: SOAR effectiveness

Table [lI] shows how long it takes to migrate each of the
deep learning models from TensorFlow to PyTorch, using
the various approaches. Our best approach (shown as SOAR)
successfully migrates 16 of the 20 DL models with a mean

Uhttps://figshare.com/s/ec38b01e057bda4b8c78
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TABLE II: Execution time for the deep learning library
migration task in each of the 20 benchmarks.

TABLE III: Execution time and average API ranking for each
of the 20 benchmarks using TF-IDF and GloVe models.

SOAR  SOAR w/o Specs.  SOAR w/o Err. Msg.
conv_pool_softmax(4L) 1.60 23.02 14.35
img_classifier(8L) 12.82 336.00 65.66
three_linear(3L) 3.18 2.34 21.07
embed_convld_linear(5L) 5.27 123.85 16.90
word_autoencoder(3L) 1.81 1.46 2.64
gan_discriminator(8L) 12.80 timeout 252.20
two_conv(4L) 16.69 timeout 15.09
img_autoencoder(11L) 160.97 391.09 487.54
alexnet(20L) 42522 timeout 66.13
gan_generator(9L) 412.47 timeout timeout
lenet(13L) 280.91 timeout timeout
tutorial(10L) 6.04 timeout 58.29
conv_for_text(11L) 9.04 timeout 32.29
vggl1(28L) 40.83 timeout 132.67
vggl6(38L) 82.05 timeout 139.27
vggl19(44L) 83.99 timeout 189.90
densenet_main1(5L) timeout timeout timeout
densenet_main2(3L) timeout timeout timeout
densenet_conv_block(6L) timeout timeout timeout

densenet_trans_block(3L) timeout timeout timeout

run-time of 97.23+141.58 seconds, and a median of 14.76 sec-
onds. The average number of lines in the 16 benchmarks that
we successfully migrate is 13.6 + 12.14, whereas the average
number of lines in the output programs is 18.56 = 16.40. The
reason the number of synthesized lines is higher than those in
the original benchmarks is that we frequently do one-to-many
mappings. In fact, 15 out of the 16 require at least one mapping
that is one-to-many. In the 16 benchmarks, SOAR tests on
average 4414.18 £ 5676 refactor candidates (i.e. program
fragments tested for each mapping), and it needs to test a
median 2111 candidates before migrating each benchmark.
The reason 4 benchmarks timeout is that in each of these
benchmarks there is at least one API in the benchmark that
has a poor ranking (i.e., not in the top 200).

D. Q2: performance of each SOAR component

We perform an ablation study to understand the effective-
ness of several features in the SOAR design.

Embeddings. In Table we show results of SOAR using
different API representation learning methods, namely TF-IDF
and tfidf-GloVe, as described in Section We can see that
for these tasks of TensorFlow to PyTorch migration, using TF-
IDF-based API matching model works better than adding pre-
trained GloVe embeddings. We believe this is because similar
APIs are often named with same words(e.g., Conv2DTranspose
VS. ConvTranspose2d) or even identical name (e.g., the APIs of
creating a Rectified Linear Unit are both named as ReLU (.. .)),
for TensorFlow and PyTorch. Thus simple word matching
method like TF-IDF is suffice for API matching purposes.
However, things are different for the second task we consider
(see Section for more details).

Another interesting result worth noticing is that although
the synthesis time differs for the two approaches, the average
rankings are quite similar for most of the benchmarks. The
reason is that despite the average rankings of correct target
APIs being similar, the incorrect APIs ranked by the model
before the correct one is different, and the time it takes to rule

SOAR w/ TF-IDF SOAR w/ Tfidf-GloVe

Time(s)  Avg. Ranking  Time(s)  Avg. Ranking
conv_pool_softmax(4L) 1.60 1.0 1.56 1.0
img_classifier(8L) 12.82 2.8 31.04 2.8
three_linear(3L) 3.18 8.0 7.70 8.0
embed_conv1d_linear(5L) 5.27 24 7.75 24
word_autoencoder(3L) 1.81 1.0 1.52 1.0
gan_discriminator(8L) 12.80 2.8 37.01 2.8
two_conv(4L) 16.69 1.0 13.75 1.0
img_autoencoder(11L) 160.97 1.9 166.34 2.0
alexnet(20L) 425.22 2.1 428.42 2.1
gan_generator(9L) 412.47 2.0 1892.86 2.0
lenet(13L) 280.91 4.3 timeout 89.1
tutorial(10L) 6.04 2.3 21.31 2.4
conv_for_text(11L) 9.04 2.3 14.08 2.3
vggl1(28L) 40.83 1.8 73.92 1.8
vggl6(38L) 82.05 1.6 114.41 1.6
vggl9(44L) 83.99 1.5 114.98 1.5
densenet_mainl(5L) timeout 172.8 timeout 2854
densenet_main2(3L) timeout 16.0  timeout 387.5
densenet_conv_block(6L) timeout 293.3 timeout 612.7
densenet_trans_block(3L) timeout 291.0 timeout 480.0

out those incorrect APIs varies greatly, determined largely by
the number of parameters required for that APIL.

Error Message Understanding. As shown in Table [lI, SOAR
performs significantly better when using the error message
understanding model. We can observe that without this com-
ponent, two of the benchmarks that SOAR could solve would
timeout at the 1 hour mark. For the 14 benchmarks it still
manages to solve, the synthesis time increases on average
4.66x. The number of performed evaluations also increase
substantially for each benchmark. For the 16 benchmarks
that SOAR successfully migrates, we evaluate an average of
43319.63 £ 61259.62 refactor candidates without the error
message understanding model. This corresponds to a 9.81 x in-
crease in the number of necessary evaluations when compared
to the full SOAR method. In summary, we can significantly
reduce the search space by interpreting error messages.

Specifications Constraints. In Table |lI, we also show the
impact of specification constraints that describe the rela-
tionship between different parameters of a given API (see
Section for details). Even though, we only have these
complex specifications for the 7 most common APIs, the im-
pact on performance is significant. Without these specification
we can only solve 6 out of 20 benchmarks. Relating the
arguments of the APIs helps SOAR to significantly reduce the
number of argument combinations that it needs to enumerate.

E. Q3: SOAR generalizability.

Our experiments so far concern deep learning library mi-
gration in Python. To study the generality of our proposed
SOAR, we applied SOAR to another task of migrating from
dplyr, a data manipulation package for R, to pandas, a Python
library with similar functionality. Fig. /| shows how the two
API matching methods perform in this domain. While with
Tfidf-GloVe, 30% of the correct APIs are ranked among the
top 5, saving lots of evaluations for the synthesizer, none of
the correct APIs are ranked by the TF-IDF-based matcher as
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its first 5 choices. Worse, nearly half of those are ranked
above 100, making the synthesis time almost prohibitively
long. We believe this is because the lexical overlap between the
names of similar APIs in those two libraries is much smaller
compared to the deep learning migration task. For example,
dplyr’s arrange and panda’s sort_values provide the same
functionality (they both sort the rows by a given column), but
the function names are different. In this way, Tfidf-GloVe can
take advantage of the pretrained embeddings to explore the
similarities between APIs beyond simple TF-IDF matching.

In Figure [6] we show the time it takes to migrate each
of the 20 benchmarks with a timeout of 3600 seconds when
using word embeddings. We solve 18 out of 20 collected
benchmarks in under 102.5 seconds. The average run time
for 18 benchmarks is 17.31 £ 22.59 seconds and a median
of 12.19 seconds. Note that for this task we did not consider
error messages, nor specifications since we wanted to test how
a basic version of SOAR would behave in a new domain.
Moreover, for this domain, all the refactored benchmarks
only used one-to-one mappings since no additional reshaping
was needed before invoking pandas APIs. Even with these
conditions, we show that we are able to successfully refactor
code for a new domain across different languages.

V. LIMITATIONS AND DISCUSSION

Here we discuss the main limitations of our method and
possible challenges for extending SOAR’s ability to refactor
new APIs, even potentially beyond the domain of data science.

Benchmarks. Our evaluation of SOAR uses benchmarks from
well-known deep learning tutorials and architectures. However,
they are all feed-forward networks, effectively sequences of
API calls where the output of the current layer is the input

of the next layer. There may be more applications that share
this feature, but support for more complex structure is likely
necessary to adapt to other domains.

Additionally, and naturally, the APIs in the benchmarks
we collected may be biased and not reflect the set of APIs
developers actually use. To assess this risk, we checked the
degree to which the APIs used in our benchmarks appear to
be widely used on other open-source repositories on GitHub.
To do this, we collected the top 1015 starred repositories
that have TensorFlow as a topic tag, which contains over 8
million lines of code and over 500K TensorFlow API calls.
We found that 76% of the 1000+ repositories use API calls
included in our benchmarks at least once, which validates
some representativeness of our collected benchmarks.

Automatic testability. One benefit of the data science/scien-
tific computing domain is that much of the input, output, and
underlying methods are typically well-defined. As a result,
it’s particularly easy to test and verify the correctness of indi-
vidually migrated calls, which can be processed in sequence.
There may be other types of libraries that share these types of
characteristics, like string manipulation or image processing
libraries, whose intermediate outputs are strings/images. We
also assume user-provided tests. Given the migration task, it
is reasonable to assume the user has tests (the code must be
sufficiently mature to justify migrating, after all), but a more
general solution might benefit from automatically generating
tests, which would both alleviate the input burden on the
user and, potentially, reduce the risks of overfitting. In our
current implementation, we moreover use the provided tests
to construct smaller test cases for each mapping. This is
particularly easy in this domain, because data science and
deep learning API calls are often functional in their paradigm.
Adapting the technique to other paradigms would require more
complex test slicing or generation to support synthesis.

Correctness. Since we evaluate our migration tasks using test
cases, it is always possible for our approach to overfit to
these tests. However, this threat can be mitigated if the user
provides a sufficiently robust test set that has provides enough
coverage. Additionally, code written to different APIs may be
functionally equivalent, but demonstrate different performance
characteristics, which we do not evaluate. However, this fact
is one reason users might find SOAR useful in the first place:
a desire to migrate code from one library to another that is
more performant for the given use case.

Error message understanding. The error message under-
standing model is built on four domain specific lexico-syntatic
patterns, which we identify as hyponyms when they appear in
an error message. We propose the hyponyms based on the
specific syntax of DL API error messages, thus take non-
trivial human effort to make it generalize to error messages
that appear when calling APIs from libraries of other domains.
However, we believe the idea of program mutation (Step 3 of
Fig.[3) is still widely applicable for the purpose of generating
SMT constraints when dealing with error messages.



Synthesis. Our approach supports one-to-many mappings but
it restricts the mapping to one API of the target library and
one or more reshaping APIs. However, this could be extended
to include many APIs of the target library at the cost of slower
synthesis times. An additional challenge is to support many-
to-one or many-to-many mappings since this would require
extending our synthesis algorithm. However, even with the
current limitations, our experimental results show that the
current approach can solve a diverse number of benchmarks.

Overall, we focus our design and evaluation on deep learn-
ing and data science libraries. These libraries have properties
that render them well-suited to our task in terms of common
programming paradigms, and norms, such as in the API
documentation. However, we believe this is also a particularly
useful domain to support, given the field’s popularity and how
quickly it moves, how often new libraries are released or
updated, as well as the wide variety of skill sets and back-
grounds present in the developers who write data science or
deep learning code. Automation of migration and refactoring
in this domain is very minimal, and we design SOAR as a step
towards better tool support for this diverse and highly active
developer population.

VI. RELATED WORK

A. Automatic Migration

Existing work on automatic API migration uses example-
based migration techniques. Lamothe et al. [47] proposed
an approach that automatically learns API migration patterns
using code examples and identified 83 API migration patterns
out of 125 distinct Android APIs. Fazzini et al. [48|] proposed
APIMigrator, which learns from how developers from existing
apps migrate APIs and uses differential testing to check
validity of the migration. They were able to achieve 85% of the
API usages in 15 apps, and validated 68% of those migrations.
Meditor [49] mines open source repositories and extracts
migration related code changes to automatically migrate APIs.
Meditor was able to correctly migrate 218 out of 225 test
cases. Unlike prior API migration tools, SOAR can migrate
code without existing code examples.

SOAR also relates to automatic migration on APIs be-
tween different programming languages. Zhong et al. proposed
MAM [50] and mined 25,805 unique API mapping relations
of APIs between Java and C# with 80% accuracy. Nguyen et
al. proposed StaMiner [19]], which is a data-driven approach
that statistically learns the mappings of APIs between Java
and C#. Bui et al [20] used a large sets of programs as
input and generated numeric vector representations of the
programs to adapt generative adversarial networks (GAN). Bui
et al. then identified the cross-language API mappings via
nearest-neighbors queries in the aligned vector spaces. Again
these methods largely rely on existing training data, such as
MAM and StaMiner [19]], [50] mine mappings from parallel
equivalent code from two languages (Java and C#), where
SOAR only leverages the documentation for migration.

B. Program Synthesis

Program synthesis has been used to automate tasks in many
different domains, such as, string manipulations [51]], table
transformations [44], SQL queries [52]], and synthesis of Java
functions [53]. However, its usage for program refactoring is
scarce. ReSynth [54] uses program synthesis for refactoring
of Java code by providing an interactive environment to
programmers, where they indicate the desired transformation
with examples of changes. Our approach differs from ReSynth
since we do not require the user to provide a partially
refactored code. Since our problem domain is API migration,
it is unlikely that the user knows all the required APIs from
the target library and can perform these edits.

NLP can be used to synthesize programs directly from nat-
ural language [51]], [52] or to guide the search of the program
synthesizer [55], [S56]. For instance, NLP has been used to
synthesize tasks related to repetitive text editing [51], SQL
queries [52]], and synthesis of regular expressions [55]]. One
can also combine input-output examples with a user-provided
natural description to have a stronger specification and achieve
better performance [55], [56]]. Our approach follows this
trend of work where we combine NLP to guide the program
synthesizer with input-output examples that provide stronger
guarantees in the synthesized code. However, instead of using
a natural description provided by the user, our approach uses
documentation from libraries to guide the search.

Using error messages from the compiler or interpreter is not
common in program synthesis. The most relevant approach to
ours is the one from Guo et al. [57] where they use type error
information to refine polymorphic types when synthesizing
Haskel code. In contrast, SOAR uses error messages from the
interpreter not to refine the type information but to restrict the
domain of the parameters and to prune the search space.

VII. CONCLUSIONS

API selection and maintenance is an important and difficult
task for software development. To match evolving software,
developers often have to manually refactor APIs, which is
a tedious and error-prone job. We proposed SOAR to take
advantage of API documentation and error messages as a
rich sources of information intended for developers. We It
uses natural language processing and program synthesis to
automatically write refactored API calls. It is particularly well-
suited for data science or deep learning library refactoring,
a prevalent use case in modern development where tool
support is positioned to have particular impact. SOAR collects
information from both API documentation and error messages
to generate logical constraints that can be used to limit the
synthesizer search space. Unlike prior approaches to automatic
API migration, SOAR requires no training data, and its output
is guaranteed to compile and pass existing tests. Our empirical
evaluation shows that SOAR can successfully refactor 16/20 of
our benchmarks for the deep learning domain with an average
time of 97.23 seconds, and 18/20 of the benchmark set for
data wrangling tasks with an average time of 17.31 seconds.
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