
A Deeper Look into Bug Fixes: Patterns, Replacements,
Deletions, and Additions

Mauricio Soto1, Ferdian Thung2, Chu-Pan Wong1, Claire Le Goues1, and David Lo2

1School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
2Singapore Management University, Singapore

mauriciosoto@cmu.edu, {ferdiant.2013,davidlo}@smu.edu.sg,
{chupanw,clegoues}@cs.cmu.edu

ABSTRACT
Many implementations of research techniques that automat-
ically repair software bugs target programs written in C.
Work that targets Java often begins from or compares to
direct translations of such techniques to a Java context.
However, Java and C are very different languages, and Java
should be studied to inform the construction of repair ap-
proaches to target it. We conduct a large-scale study of bug-
fixing commits in Java projects, focusing on assumptions un-
derlying common search-based repair approaches. We make
observations that can be leveraged to guide high quality au-
tomatic software repair to target Java specifically, including
common and uncommon statement modifications in human
patches and the applicability of previously-proposed patch
construction operators in the Java context.

Keywords
Automatic error repair; Maintainability; Human-like patches

1. INTRODUCTION
There has been considerable recent attention paid to au-

tomatic program repair (e.g., [5, 6, 9, 7]). One broad class
of techniques in this space take a generate-and-validate ap-
proach: generating a large number of candidate patches us-
ing a pre-defined set of mutation operators, and then validat-
ing correctness with respect to a set of test cases. Mutation
operators range from simple, coarse granularity statement-
level mutations to human-constructed templates learned from
a large corpus of previous human bug-fixing commits.

A considerable proportion of these works target programs
written in C. Indeed, researchers targeting Java often start
from or compare against Java-based implementations of tech-
niques originally implemented for C [3, 5]. This is an over-
sight because Java and C are very different languages. Con-
sider GenProg [6], which combines statement-level muta-
tions into patches to address a particular defect. Which
“Statements” (a semantic unit in C) should be manipulated

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR 2016 Austin, Texas USA
c© 2016 ACM. ISBN 978-1-4503-4186-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901739.2903495

in Java? Can we learn intelligent rules to inform candidate
modifications (cf. Prophet [7], for C)? What types of se-
mantic scoping should limit mutations, given the relative
stringency of the Java compiler?

In this paper, we study bug-fixing commits to Java pro-
grams, taken from several million human-made bug fixes
from Github. We study broad characteristics of these changes;
the applicability of previously-proposed Java repair tem-
plates [5]; and the nature of additions and replacements of
Java statements in bug-fixing commits. We make observa-
tions to directly guide future research in automatic repair
of Java programs, to increase the success rate of such tech-
niques and the degree to which the patches are human-like
and therefore more readable and maintainable by human
developers. This is important, because patch quality is an
important concern in this area [10].

Related work. Zhong and Su [11] ask some of the same
questions we do, on 6 projects. We study a much larger
dataset [4] with 380,125 repositories; and we look at more
statement types, as well as replacements. Similar to our
study in Section 4, researchers have studied AST-level [8]
and line-level changes [1] across bug fixing commits. Al-
though the granularity differs, our approach is also novel
with respect to scale of analysis. Barr et al. [2] studied
changes to Java programs to understand the“Plastic Surgery
Hypothesis” underlying certain types of program repair, an
orthogonal concern. Kim et al. [5] manually analyze changes
to Java programs to inform automated repair, and show that
doing so results in higher-quality repairs; we study their
templates heuristically on a different dataset. Their results
motivate studies of human repairs, as it may result in better
patches. Long and Rinard learn probabilistic models from
bug fixes to C code [7]. Our analysis is significantly less pre-
cise and does not inform a new technique. Rather, it serves
as a starting point for research on the repair of Java bugs.

2. DATASET AND CHARACTERISTICS
First, we broadly characterize bug-fixing commits to Java

code. In this paper, we study the September 2015/Github
dataset offered by Boa, including 554, 864 Java projects with
23, 229, 406 revisions. Boa identifies 4, 590, 679 as bug fixing.

How many files are changed to fix a bug? Most pro-
gram repair techniques assume that bugs are local to only
one or two files. We consider a file changed if it is new,
modified, or deleted in a commit. In total, 52, 052, 571 files
were changed, an average of 11.3 files per bug-fixing commit.
The median number of file changed is 2. Although the me-

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 512

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 512

File Kind Total Average

Binary 752,945 0.16
Java (ERROR) 2,073,558 0.45
Java (JLS2) 2,607,413 0.57
Java (JLS3) 15,748,967 3.43
Java (JLS4) 83,798 0.02
Text 541,023 0.12
XML 6,818,299 1.49
UNKNOWN 23,426,568 5.10

Introducing Total Average

Class 729,201 0.16
Methods 3,186,867 0.69
Fields 6,076,646 1.32
Variables 924,259 0.20

Table 1: Top: File Types of Changed Files. Bottom:
Introduction of new classes, methods, fields, local
variables to fix bugs.

dian conforms to our intuition, the average is surprisingly
high, suggesting a long tailed distribution. We hypothe-
size that other software artifacts (e.g. documentation) may
be updated after bug fixing, or fixing commits may contain
changes unrelated to fixing the bug (e.g. refactoring, feature
addition). To better understand this phenomenon, we ask:

What are the types of those changed files? The
top of Table 1 shows the types of the changed files in the
Boa dataset. Text and binary files are changed least fre-
quently. This is unsurprising, since such files are often doc-
umentation, and binaries should be changed rarely. XML
files in Java projects usually represent build files; chang-
ing build files is unsurprising. Rather more surprising is
how frequently UNKNOWN files are changed. Given that
all projects are Java projects, it is unclear whether these
are written in other programming languages. We hypoth-
esize they might be test resources. JAVA (ERROR) files
are those that Boa failed to parse. JLS2, JLS3, and JLS4
are Java files in different J2SE versions. If we group all Java
types, on average, each bug fixing revision changes 4.47 Java
files. This does not conform to our assumption of bug local-
ity. To better understand what changes are usually made to
those Java files, we next ask:

How often do developers introduce new classes, meth-
ods, fields, local variables in bug fixing commits?
This question is interesting because most automatic pro-
gram repair approaches do not create methods or variable
declarations, nor do most explicitly consider object-oriented
features, like fields or classes. The bottom section of Table 1
shows that introducing new classes or variables is rare. On
average, we still have 0.69 new methods per bug fix. These
methods include new test methods (annotated by @Test, for
example), which is not too alarming. However, we note that
1.32 fields are created per bug fix, suggesting that automatic
program repair approaches should pay attention to the state
of the class when fixing Java programs.

3. BUG FIXING PATTERNS
One of the best-known program repair techniques to tar-

get Java is PAR [5]. PAR modifies Java code according
to predefined templates, constructed by humans to cover
a large set of bug fixes from an existing corpus. These

templates provide important source of possible mutations
to study to inform future directions. We therefore search
for most of the PAR bug fixing patterns, estimating their
prevalence in this dataset.

3.1 Detecting PAR templates using Boa
Boa’s capabilities are powerful, but limited in the preci-

sion it enables in detection of PAR bug-fixing patterns. For
example, it cannot directly diff two files. Rather than find-
ing exact counts of bug fixing patterns, we approximate by
processing pre- and post-fix files separately. Additionally,
two of the 10 patterns cannot be easily detected by Boa, as
we describe below. We search for the following patterns:
Altering method parameters (AMP). This template
changes input method parameters. To detect this pattern,
for both pre- and post-fix versions of a buggy file, we create a
custom method call signature that contains the name, literal
parameters, and variable parameters, all as string (complex
expressions are listed as “OTHER” string). We discard sig-
natures that appear both in pre- and post-fix versions, and
then identify methods with the same name and number of
parameters, but different signatures between versions.
Calling another method with the same parameters
(MSM). This template changes a method name. To detect
it, we create a method signature similar to the above for
AMP, looking for methods with the exact same parameter
signature but different names in pre- and post-fix versions.
Calling another overloaded method with one more
parameter (COM). This template adds a parameter to
a method. We create a method signature similar to the
above, seeking methods with the same name, but with one
more parameter in the post-fix version.
Add or remove a branch condition (ABC). This tem-
plate adds or removes a condition. We count the number of
logical and and logical or inside if conditional expression for
both pre- and post-fix version. We assume that the addi-
tion/removal of logical operators indicate addition/removal
of condition. If there is a difference in count between ver-
sions, we consider an instance of the ABC pattern is found.
Initializing an object (IAO). This template adds a ini-
tialization to object declaration. We count the number of
NEW expressions in variable declarations for both pre- and
post-fix versions. If there is a larger count in post-fix version,
we consider that an instance of the IAO pattern is found.
Adding a null checker (ANC). This template inserts a
condition to check whether an object is null. To detect ANC
pattern, we count the number of if conditional expressions
that contains !=null or ==null for both pre- and post-fix
version. If there is a larger count in post-fix version, we
consider that an instance of the ANC pattern found.
Adding an array out of bound checker (AOB). This
pattern inserts a condition check to check that an array
index is within bound right before the index is used. We
count the number of if conditional expression that contains
expr<var.length or var.length>expr for both pre- and post-
fix versions. If there is a larger count in post-fix version, we
consider that an instance of the AOB pattern is found.
Adding a collection out of bound checker (COB).
This pattern inserts a condition to check that a collection
index is within bound before it is used. To detect COB pat-
tern, we count the number of if conditional expression that
contains expr<col.size() or col.size()>expr for both pre- and
post-fix version. If the is a larger count in post-fix version,

513513

we consider that an instance of the COB pattern is found.
These patterns cover 8 of the 10 bug fixing patterns in

PAR. We do not investigate (1) Class Cast Checker (cannot
be analyzed because Boa does not support the instanceof ex-
pression); and (2) Expression Changer (requires us to track
scope between pre- and post-fix version; not easily supported
by Boa). Investigating 8 out of 10 patterns provides an in-
formative approximation of their prevalence.

3.2 Results

#Appearance Percentage
AMP Pattern 901,083 1.95%
MSM Pattern 783,073 1.69%
COM Pattern 270,128 0.58%
ABC Pattern 1,959,377 4.23%
IAO Pattern 1,308,006 2.82%
ANC Pattern 1,340,561 2.90%
AOB Pattern 128,016 0.28%
COB Pattern 262,915 0.57%

Table 2: Frequency of Bug Fixing Patterns

Table 2 estimates the prevalence of PAR templates in the
Java dataset. The most common pattern we observed is
ABC (add or remove a branch condition); and the least com-
mon pattern is AOB (adding an array out of bound checker).
If we conservatively assume that these patterns never appear
together, they cover 14.78% of buggy files. In the dataset
studied by Kim et al., the overall 10 patterns cover almost
30% of real patches [5]. Although we only analyze 8 out of
10 bug fixing patterns, it is unlikely the final two will cover
the difference. To even get close to 30%, each of the patterns
need to cover around 7% of buggy files and we still assume
that the patterns never appear together. This suggests that
these fixing patterns might not generalize beyond an initial
dataset, and that more work remains to expressively char-
acterize human bug-fixing behavior.

4. STATEMENT-LEVEL MUTATIONS
Some automatic repair approaches seek generality by us-

ing higher-granularity mutation operators such as statement-
level addition, deletion and replacement. To support the
generation of high-quality patches, we analyze how develop-
ers mutate source code to fix bugs at this granularity level.

Detection Approach Because direct diffs are difficult to
identify on this dataset, we heuristically approximate the ex-
tent to which one statement type appears to be “replaced”
by another. For each modified file, we count the number of
appearances of each statement type in the file pre- and post-
commit. We then compare the results to see how many of
each statement type was removed, and how many inserted,
to roughly characterize the types of replacement that hap-
pen at a per-file level. Note that this analysis doesn’t distin-
guish the replacement of the same statement kind, since we
are counting the amount of appearances of each statement
kind. We follow a similar approach to approximately count
deletions and insertions. For each bug fixing revision r and
each statement kind k, we compare the count of statements
of kind k in revision r and r − 1.

Potential replacements. Table 3 shows the replacement
likelihood for our dataset (each cell shows the percent of

the time that the statement in the row was replaced by a
statement of the type in the column). For example, the
corresponding to the Do row (row 5) and Assert column
(column 2) shows 0.81, indicating that Do statements were
replaced by Assert statements 0.81% of the times.

Additional analysis (raw numbers not shown) show that
the most common replacement replaces Return statements
with If statements (in 30,489 files). The second most com-
mon replacement replaces an If statement with a Return

(28,536 incidences). By contrast, the least common replace-
ment was an Assert statement replacing a TypeDecl, which
we did not observe. The second least common replacements
were replacing Do statements or Labels for a TypeDecl; we
observed these once each.

The most common replacement statement (the statement
kind that most commonly replaces others) is the If state-
ment (101,366 appearances). The least common replacement
is the TypeDecl (447 appearances). The most common re-
placee was the Return (111,938 appearances); the least com-
mon replacee was again the TypeDecl (399 appearances).

Potential deletions and insertions From Figure 1, we
can see that expression, If, Return, for and Try state-
ments are both added and deleted most often as compared
to the other statement times. These findings indicate that
most bugs were fixed by changing control flow.

An important study that complements ours is the repair
model approach proposed by Martinez and Monperrus [8],
which proposes a probability distribution suggesting when to
apply which kind of edit. Although their approach can trace
more fine-grain AST-level changes, our results are consistent
with their findings. For example, their empirical analysis [8]
shows that method invocations, if statements, and variable
declarations are added/deleted/updated most often, which
is also illustrated in Figure 1 (Boa groups method invoca-
tions and variable declarations into the Expression cate-
gory). Our study complements there at a much larger scale
(we study 380,125 repositories with 23,229,406 revisions as
compared to the 14 repositories in the prior work).

5. DISCUSSION
Threats to validity. The correctness of our analysis de-
pends on both our programs and Boa and its DSL. For exam-
ple, we rely on Boa to identify bug fixing revisions; however,
precisely accomplishing this is an open problem. To mitigate
the risk of implementation errors, we released our scripts1.
Because Boa does not provide an easy mechanism to identify
precise, statement-level diffs between revisions, our template
matching and analysis of code changes (by counting each
statement kind) only provide estimates of behavior; we con-
sider our results as informative approximations.
Lessons learned. The findings of our study provide use-
ful insights for automatic program repair tools in Java. It
suggests that patterns proposed by the state-of-the-art ap-
proaches for Java are insufficient to cover the extent of bug
fixes in our dataset. Adding more patterns is one solution,
but may not be a general one. Our findings further suggest
that mutation based program repair may need to consider
field or method insertion to achieve human-comparability
in patches. This finding indicates that direct translation of
mutation based approaches from C to Java is not likely to
succeed due to the different language constructs. A deeper

1https://github.com/chupanw/BoaChallenge

514514

Assert Break Continue Do For If Label Return Case Switch Synch Throw Try TypeDecl While

Assert - 7.48 3.76 0.53 8.30 23.05 0.31 20.04 4.90 4.62 1.30 13.50 7.23 0.03 4.95
Break 1.00 - 4.08 0.60 9.93 26.03 0.13 25.39 2.48 1.57 1.79 8.39 11.73 0.10 6.77
Continue 1.74 9.42 - 1.28 11.39 18.25 0.35 22.60 3.80 2.85 2.17 8.98 9.42 0.11 7.63
Do 0.81 5.26 6.60 - 9.44 14.21 0.18 15.86 3.73 1.67 1.97 5.88 6.39 0.03 27.98
For 0.86 6.28 3.19 0.79 - 22.89 0.09 21.08 5.01 3.34 1.87 10.01 10.71 0.08 13.79
If 1.64 8.43 2.87 0.60 13.49 - 0.24 26.46 7.45 4.80 2.85 9.89 15.11 0.08 6.11
Label 1.30 8.33 7.86 1.11 5.18 22.85 - 15.17 3.05 2.04 14.62 10.45 4.16 0.09 3.79
Return 1.13 9.41 3.11 0.49 13.33 27.24 0.24 - 5.59 3.65 2.55 14.91 12.61 0.12 5.61
Case 0.78 2.84 2.84 0.39 10.27 31.79 0.16 22.40 - 0.46 2.07 7.37 11.69 0.08 6.87
Switch 1.14 2.72 3.80 0.55 11.07 34.14 0.13 21.86 0.75 - 1.53 8.65 9.02 0.05 4.58
Synch 0.80 6.57 2.28 0.43 10.21 24.18 0.05 19.77 6.35 2.07 - 9.16 12.16 0.04 5.93
Throw 2.11 6.57 2.58 0.48 11.87 18.84 0.17 32.28 4.64 3.30 2.74 - 10.08 0.07 4.27
Try 0.71 7.41 3.02 0.66 11.73 27.75 0.11 23.24 5.63 2.65 2.58 8.99 - 0.09 5.42
TypeDecl 0.00 4.51 7.52 1.00 10.28 21.05 0.50 17.79 6.02 1.75 2.01 9.27 11.53 - 6.77
While 0.72 8.02 3.82 1.96 23.16 19.78 0.12 16.48 6.56 3.09 1.64 6.81 7.80 0.04 -

Table 3: Likelihood of replacing a statement type (row) by a statement of another type (column), for Java.

Figure 1: For each kind of statement, how many bug fixing revisions add/delete statements of the same kind?

look suggests that such techniques may benefit from leverag-
ing probabilistic knowledge of what types of statements are
commonly inserted, deleted, or replaced in Java bug-fixing
commits. Again, the probabilistic knowledge for C is not
likely to work for Java program if different coding conven-
tions are considered. Overall, our findings motivate addi-
tional study of repair in Java, as assumptions that underlie
approaches that target C are unlikely to translate directly.

6. ACKNOWLEDGMENTS
This work is partially supported by the US Department of

Defense through the Systems Engineering Research Center
(SERC), Contract H98230-08-D-0171.

7. REFERENCES
[1] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and

M. Di Penta. LHDiff: A Language-Independent
Hybrid Approach for Tracking Source Code Lines.
ICSM, pages 230–239, 2013.

[2] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and
F. Sarro. The plastic surgery hypothesis. In FSE,
pages 306–317, 2014.

[3] F. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus.
Automatic repair of buggy if conditions and missing
preconditions with smt. In CSTVA, 2014.

[4] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen.
Boa: A language and infrastructure for analyzing
ultra-large-scale software repositories. In ICSE, pages
422–431, 2013.

[5] D. Kim, J. Nam, J. Song, and S. Kim. Automatic
patch generation learned from human-written patches.
In ICSE, pages 802–811, 2013.

[6] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer.
Genprog: A generic method for automatic software
repair. IEEE Transactions on Software Engineering,
38(1):54–72, 2012.

[7] F. Long and M. Rinard. Automatic patch generation
by learning correct code. In POPL, 2016.

[8] M. Martinez and M. Monperrus. Mining software
repair models for reasoning on the search space of
automated program fixing. Empirical Software
Engineering, 20(1):176–205, 2015.

[9] S. Mechtaev, J. Yi, and A. Roychoudhury. DirectFix:
Looking for simple program repairs. In ICSE, 2015.

[10] Z. Qi, F. Long, S. Achour, and M. Rinard. An analysis
of patch plausibility and correctness for
generate-and-validate patch generation systems. In
ISSTA, pages 24–36, 2015.

[11] H. Zhong and Z. Su. An empirical study on real bug
fixes. In ICSE, pages 913–923, 2015.

515515

