
Measuring Code Quality
to Improve Specification Mining

Claire Le Goues and Westley Weimer

Abstract—Formal specifications can help with program testing, optimization, refactoring, documentation, and, most importantly,

debugging and repair. However, they are difficult to write manually, and automatic mining techniques suffer from 90-99 percent false

positive rates. To address this problem, we propose to augment a temporal-property miner by incorporating code quality metrics. We

measure code quality by extracting additional information from the software engineering process and using information from code that

is more likely to be correct, as well as code that is less likely to be correct. When used as a preprocessing step for an existing

specification miner, our technique identifies which input is most indicative of correct program behavior, which allows off-the-shelf

techniques to learn the same number of specifications using only 45 percent of their original input. As a novel inference technique, our

approach has few false positives in practice (63 percent when balancing precision and recall, 3 percent when focused on precision),

while still finding useful specifications (e.g., those that find many bugs) on over 1.5 million lines of code.

Index Terms—Specification mining, machine learning, software engineering, code metrics, program understanding.

Ç

1 INTRODUCTION

INCORRECT and buggy behavior in deployed software costs
up to $70 billion each year in the US [46], [53]. Thus,

debugging, testing, maintaining, optimizing, refactoring,
and documenting software, while time consuming, remain
critically important. Such maintenance is reported to
consume up to 90 percent of the total cost of software
projects [49]. A key maintenance concern is incomplete
documentation [15]: Up to 60 percent of maintenance time is
spent studying existing software (e.g., [47]). Human pro-
cesses and especially tool support for finding and fixing
errors in deployed software often require formal specifications
of correct program behavior (e.g., [43]); it is difficult to repair
a coding error without a clear notion of what “correct”
program behavior entails. Unfortunately, while low-level
program annotations are becoming more and more prevalent
[14], comprehensive formal specifications remain rare.

Many large, preexisting software projects are not yet
formally specified [14]. Formal program specifications are
difficult for humans to construct [11], and incorrect
specifications are difficult for humans to debug and modify
[4]. Accordingly, researchers have developed techniques to
automatically infer specifications from program source code
or execution traces [2], [3], [20], [25], [51], [60], [61]. These
techniques typically produce specifications in the form of
finite state machines that describe legal sequences of
program behaviors.

Unfortunately, these existing mining techniques are
insufficiently precise in practice. Some miners produce large

but approximate specifications that must be corrected
manually (e.g., [4]). As these large specifications are
imprecise and difficult to debug, this paper focuses on a
second class of techniques that produce a larger set of smaller
and more precise candidate specifications that may be easier
to evaluate for correctness. These specifications typically
take the form of two-state finite state machines that describe
temporal properties, e.g., “if event a happens during
program execution, event b must eventually happen during
that execution.” Two-state specifications are limited in their
expressive power; comprehensive API specifications cannot
always be expressed as a collection of smaller machines [25].

Despite this limitation, two-state machines are useful in
both industrial and research practice [14], [31], and previous
research efforts have developed techniques for mining them
automatically [20], [59]. Such techniques typically produce a
large set of candidate specifications, often in a ranked list (e.g.,
[20]). A programmer must still evaluate this ranked list of
candidate specifications to separate the true specifications from
the false positive specifications. In this context, a false positive
is a candidate specification that does not describe required
behavior: A program trace may violate such a “specification”
and still be considered correct. A true specification describes
behavior that may not be violated on any program trace or the
program contains an error. Unfortunately, techniques that
produce this type of ranked list of smaller candidates suffer
from prohibitively high false positives rates (90-99 percent)
[59], limiting their practical utility.

This paper develops an automatic specification miner
that balances true positives—as required behaviors—with
false positives—nonrequired behaviors. We claim that one
important reason that previous miners have high false
positive rates is that they falsely assume that all code is
equally likely to be correct. For example, consider an
execution trace through a recently modified, rarely exe-
cuted piece of code that was copied and pasted by an
inexperienced developer. We believe that such a trace is a
poor guide to correct behavior, especially when compared

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012 175

. The authors are with the Department of Computer Science, School of
Engineering, University of Virginia, 151 Engineer’s Way, PO Box 400740,
Charlottesville, VA 22904-4740.
E-mail: {legoues, weimer}@cs.virginia.edu.

Manuscript received 16 Nov. 2009; revised 27 Apr. 2010; accepted 21 Aug.
2010; published online 3 Jan. 2011.
Recommended for acceptance by M. Harman.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2009-11-0328.
Digital Object Identifier no. 10.1109/TSE.2011.5.

0098-5589/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

with a well-tested, stable, and commonly executed piece of
code. Patterns of specification adherence may also be useful
to a miner: A candidate that is violated in the high-quality
code but adhered to in the low-quality code is less likely to
represent required behavior than one that is adhered to on
the high-quality code but violated in the low-quality code.
We assert that a combination of lightweight, automatically
collected quality metrics over source code can usefully
provide both positive and negative feedback to a miner
attempting to distinguish between true and false specifica-
tion candidates.1

The main contributions of this paper are2:

. We identify and describe lightweight, automatically
collected software features that approximate source
code quality for the purpose of mining specifications,
and we evaluate their relative predictive powers.

. We explain how to lift code quality metrics to
metrics on traces, and empirically measure the
utility of our lifted quality metrics when applied to
previous static specification mining techniques.
Existing off-the-shelf specification miners can learn
just as many specifications using only the 44 percent
highest quality traces, refuting previous claims that
more traces are neccessarily better for mining [57].

. We propose two novel specification mining techni-
ques that use our automated quality metrics to
learn temporal safety specifications while avoiding
false positives. We compare our approaches to two
previous approaches, evaluating on over 1.5 million
lines of code. Our basic mining technique balances
true and false specifications. It learns specifications
that locate more safety-policy violations than
previous miners (884 versus 663) with a lower rate
of false positives (63 percent versus 89 percent).
Our second technique focuses on precision. It
obtains a 3 percent false positive rate (one false
candidate), an order-of-magnitude improvement on
previous work. The specifications it finds identify

355 violations. To our knowledge, these are the first
scalable specification miners that produce multiple
two-state candidate specifications with false posi-
tive rates under 89 percent.

The rest of this paper is organized as follows: In Section 2,
we describe temporal safety specifications and highlight
uses, and give a brief overview of specification mining.
Section 3 presents an example that motivates the insight
formalized in our mining approach. Section 4 describes our
approach to specification mining, including the quality
metrics used. In Section 5, we present experiments support-
ing our claims and evaluating the effectiveness of our miner.
We discuss related work in Section 6. We conclude in
Section 7.

2 BACKGROUND

In this section, we present background on temporal safety
specifications and how they may be mined automatically
from source code.

2.1 Temporal Safety Specifications

A partial-correctness temporal safety property is a formal
specification of an aspect of required or correct program
behavior [37]; they often describe how to manipulate
important program resources. We refer to such properties
as “specifications” for the remainder of this paper. Such
specifications can be represented as a finite state machine
that encodes valid sequences of events. Fig. 1 shows source
code and a specification relating to SQL injection attacks
[40]. In this example, one potential event involves reading
untrusted data from the network, another sanitizes input
data, and a third performs a database query. Typically, each
important resource is tracked with a separate finite state
machine [16] that encodes the specification that applies to
its manipulation. A program execution adheres to a given
specification if and only if it terminates with the corre-
sponding state machine in an accepting state (where the
machine starts in its start state at program initialization).
Otherwise, the program violates the specification and
contains an error.

This type of partial-correctness specification is distinct
from, and complementary to, full formal behavior specifica-
tions. They can be used to describe many important
correctness properties, including resource management
[59], locking [13], security [40], high-level invariants [23],
memory safety [31], and more specialized properties such

176 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

Fig. 1. Pseudocode and specification for a networked program that receives untrusted data via sockets. The bad method passes unsafe data to the
database; good works correctly. Important events are italicized. The partial-correctness temporal safety specification shown on the right governs
database interactions.

1. Enumerating all true specifications for a project is undecideable, and
the number of possible true positives is usually unknown. We adopt the
domain practice of using “all true specifications identified to date” as a
proxy for “all true specifications” for a given program. Statistical techniques
such as capture, recapture analyses do not apply because the underlying
distribution of specifications in source code is unknown and cannot be
assumed to be random.

2. Some of these points were previously presented [38], [59]; a detailed
comparison between the previous work and this paper is provided in
Section 6.

as the correct handling of setuid [11] or asynchronous I/O
request packets [5]. Such specifications are used by almost
all existing defect-finding tools (e.g., [5], [13], [14], [23]).
Additionally, formal specifications are instrumental in
program optimization [39], testing [6], refactoring [34],
documentation [8], and repair [56].

In this paper, we focus on the simplest and most
common type of temporal specification: a two-state finite
state machine [20], [38], [59]. A two-state specification states
that an event a must always eventually be followed by
event b. This corresponds to the regular expression ðabÞ�,
which we write ha; bi. We focus on this type of property
because mining FSM specifications with more than two
states is historically imprecise, and debugging such
specifications manually is difficult [4]. While two-state
temporal properties are by definition more limited in their
expressive power [25], [61], they can be used to describe
important properties such as those controlling resource
allocation/deallocation or invariant restoration (examples
i n c l u d e hopen ,close i, hmalloc ,free i, a n d
hlock,unlocki). These examples, and similar such speci-
fications, are prevalent in practice [14].

2.2 Specification Mining

Specification mining seeks to construct formal specifications
of correct program behavior by analyzing actual program
behavior. Program behavior is typically described in terms
of sequences of function calls or other important events.
Examples of program behavior may be collected statically
from source code (e.g., [20]) or dynamically from instru-
mented executions on indicative workloads (e.g., [60]). A
specification miner examines such traces and produces
candidate specifications, which must be verified by a human
programmer. Some miners produce a single finite auto-
maton policy with many states [2], [3], [60]. Others produce
many small automata of a fixed form [20], [25], [59], [61]. As
large automata are more difficult to verify or debug [4], we
choose to focus on the latter, as described above.

Mining even these simple two-state specifications re-
mains difficult [25]. Given the large number of candidate
ha; bi pairs generated by even a restricted set of program
traces, determining which pairs constitute valid policies is
nonobvious. Most pairs, even those that frequently occur
together (such as hprint,printi or, more insidiously,
hhasNext,getNexti), do not represent required pairings:
A program may legitimately call hasNext without ever
calling getNext. Miners can also be led astray by policy
violations, as they seek to discern correct behavior from
code that may be incorrect.

Engler et al. note that programmer errors can be inferred
by assuming that the programmer is usually correct [20]. In
other words, common behavior implies correct behavior,
while uncommon behavior may suggest a policy violation

(a principle that similarly underlies modern intrusion
detection, e.g., [24]). Intuitively, a candidate specification
that is followed on 10 traces and violated on another 10 is
unlikely to encode required behavior since programmers
rarely make mistakes a full 50 percent of the time.
However, a candidate that is adhered to in 90 percent of
relevant traces more likely represents required behavior.
Engler et al.’s miner operates on this principle by counting
the number of times a and b appear together and the
number of times that a appears without b. It uses the
z-statistic for comparing proportions to rank the likelihood
that the correlation is deliberate, ultimately presenting a
ranked list of candidate specifications for programmer
review. Unfortunately, without additional human gui-
dance, this technique is prone to a very high rate of false
positives. On one million lines of Java code, only 13 of 2,808
positively ranked specifications generated by ECC were
real: a 99.5 percent false positive rate [59].

We observed in previous work that programmers often
make mistakes in error-handling code [59]. We used an
additional bit per trace—whether it passed through a
catch block—when evaluating candidate pairs (i.e., event
a must be followed by event b on at least one nonerror trace
and not followed by b on at least one error trace).
Additionally, we required that the events a and b in a
candidate pair come from the same package or library,
assuming that independent libraries are unlikely to depend
on one another for API-level correctness. These insights led
to the WN mining algorithm, which improved mining
accuracy by an order of magnitude. On the same million
lines of Java code, WN generated only 649 candidate
specifications, of which 69 were real, for an 89 percent
false positive rate. However, this rate is still too high for
automatic applications or industrial practice, as candidates
must still be hand validated. This paper proposes a new
specification mining approach that lowers this false
positive rate.

3 MOTIVATING EXAMPLE

In this section, we motivate our quality-based mining
technique by showing that we can use measurements of
code quality to distinguish between a true and a false
positive candidate specification.

Traces containing a and b in the appropriate order adhere
to a candidate specification ha; bi, while traces that only
contain a violate it. Fig. 2 shows two candidates, one true
and one false, mined from ptolemy2, an open-source Java
project for design modeling by Engler et al.’s z-score
technique [20], described in Section 2.2. Unfortunately,
ranking candidates by their z-scores does not sufficiently
distinguish them. The two candidates shown, as well as
more obvious false positives such as hprint,printi,
appear near one other on the z-ranked list of 655 candidates.

LE GOUES AND WEIMER: MEASURING CODE QUALITY TO IMPROVE SPECIFICATION MINING 177

Fig. 2. Two of the 655 candidate specifications mined by ECC on ptolemy2. The first candidate is a true specification: getReadAccess must
always eventually be followed by doneReading along all program paths. The second candidate is a false specification: A program path may include
isConstant but not isEvaluated and still be considered correct.

We hypothesize that high-quality code is a better guide to
required behavior than low-quality code, and thus should be
given more weight when counting frequencies for mining.
Taken from the other side, code that adheres to a true
specification should generally be of higher quality than code
that violates it (such violating code contains an error, by
definition). Code traces adhering to or violating a false
candidate should not differ dramatically in quality since,
with respect to the spurious candidate, neither trace is more
correct than the other. Bearing these patterns in mind, code
quality can provide both positive and negative feedback to an
automatic specification miner. We propose to identify quality
metrics that distinguish between good and bad code, and
thus the candidates presented in Fig. 2. We briefly describe
only a few metrics here for the purposes of illustration;
Section 4.1 presents a complete list of metrics used.

Our previous work suggested that programmers make
mistakes in error-handling code [59], perhaps because
programmers do not reason properly about uncommon
code paths (such as those through catch blocks). We
surmise that a candidate that is adhered to on common
paths but violated on uncommon paths is thus more likely a
true specification, as the violations are more likely to be
bugs. We use a research tool [10] that statically predicts the
likelihood that a path will be executed when its enclosing
method is called (its predicted frequency). We observe that
the hypothesized pattern holds for the adhering and
violating traces of the candidates in Fig. 2. Traces that
adhere to the true candidate have an average predicted
frequency of 39 percent; those that violate it, only 4 percent.
By contrast, the false candidate’s adhering traces are
predicted to be run less frequently than its violating traces
(31 percent versus 58 percent)!

Other research presented a human-defined code read-

ability metric; more readable code is correlated with fewer
errors [9]. Reapplying the logic from above, we hypothesize
that the true specification’s adhering traces are more
readable than its violating traces (containing an error),
and that such a distinction might not hold for the false
candidate; we use the research tool described in [9] to
measure normalized code readability. The true specifica-
tion’s traces have quite different maximum readabilities:
0.98 for adhering traces versus 0.59 for violating traces. By
contrast, the false candidate’s traces again follow the
opposite pattern: Adhering traces are less readable than
violating traces (0.05 versus 0.31), suggesting that violations
of the false positive candidate are not really errors.

Finally, previous research suggests that recently or
frequently edited code is correlated with policy violations
[45]; code that has been stable for a long time is more likely
to be correct. A project’s source control management logs
admit measurement of churn along any given trace, and the
code for the two candidates in Fig. 2 follows that pattern.
The true specification’s adhering traces were last changed
much earlier in the development process on average
(revision 15,387 out of 29,324 total revisions) than the
violating traces (revision 20,884). The adhering traces have
been stable for a longer period of time; they are more likely
to be correct. The false candidate’s traces again follow the

antipattern: the adhering traces were last changed more
recently than the violating ones (25,189 versus 19,238).

The candidates in Fig. 2 are difficult to distinguish by
looking only at the proportion of traces on which they are
followed or violated (i.e., their z-rank). However, the code
from which they are mined is not of equivalent quality, and
measurable features may follow patterns that can help us
distinguish two otherwise very similar candidates. The rest
of this paper formalizes this notion and presents an
empirical evaluation of its validity.

4 OUR APPROACH

We present a new specification miner that works in three
stages. First, it statically estimates the quality of source code
fragments. Second, it lifts those quality judgments to traces
by considering all code visited along a trace. Finally, it
weights each trace by its quality when counting event
frequencies for specification mining.

Code quality information may be gathered either from
the source code itself or from related artifacts, such as
version control history. By augmenting the trace language
to include information from the software engineering
process, we can evaluate the quality of every piece of
information supporting a candidate specification (traces
that adhere to a candidate as well as those that violate it and
both high and low-quality code) on which it is followed and
more accurately evaluate the likelihood that it is valid.
Section 4.1 provides a detailed description of the set of
features we have chosen to approximate the quality of code;
Section 4.2 details our mining algorithm.

4.1 Quality Metrics

We define and evaluate two sets of metrics. The first set
consists of seven metrics chosen to approximate code
quality. This list should not be taken as exhaustive, nor are
the quality metrics intended to individually or perfectly
measure quality. Indeed, a primary thesis of this paper is
that lightweight and imperfect metrics, when used in
combination, can usefully approximate quality for the
purposes of improved specification mining. Thus, we focus
on selecting metrics that can be quickly and automatically
computed using commonly available software artifacts,
such as the source code or version control histories. We
looked particularly to previous work for code features that
correlate with fault-proneness or observed faults. In the
interest of automation, we exclude metrics that require
manual annotation or any other form of human guidance.

The second set of metrics consists of previously
proposed measures of code complexity. We use these
primarily as baselines for our analysis of metric power in
Section 5; this evaluation may also be independently useful
given their persistent use in practice [48].

The metrics in the first set (“quality metrics”) are:
Code churn. Previous research has shown that frequently

or recently modified code is more likely to contain errors [45],
perhaps because changing code to fix one defect introduces
another, or because code stability suggests tested correct-
ness. We hypothesize that churned code is also less likely to
adhere to specifications. We use version control repositories
to record the time between the current revision and the last

178 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

revision for each line of code in wall clock hours. We also
track the total number of revisions to each line. Such metrics
can be normalized or given as absolute ranges.

Author rank. We hypothesize that the author of a piece
of code influences its quality. A senior developer who is
very familiar with the project and has performed many
edits may be more familiar with the project’s invariants
than a less experienced developer. Source control histories
track the author of each change. The rank of an author is
defined as the percentage of all changes to the repository
ever committed by that author. We record the rank of the
last author to touch each line of code. While author rank
may be led astray by certain methodologies (e.g., some
projects may have a small set of committers that commit on
behalf of more than one author [18]; others may assign more
difficult and thus error-prone tasks to more senior devel-
opers), we note that it may be automatically collected from
version control histories and is a proxy for expertise, which
is otherwise challenging to approximate automatically.

Code clones. We hypothesize that code that has been
duplicated from an another location may be more error
prone because it has not necessarily been specialized to its
new context (e.g., copy-paste code), and because patches to
the original code may not have propagated to the duplicate.
Research has shown that cloned code is changed consis-
tently a mere 45-55 percent of the time [36]. While not all
code cloning is harmful [32], perhaps because common code
clones may be more comprehensively tested, we further
hypothesize that duplicated code does not represent an
independent correctness argument: If print follows
hasNext in 20 duplicated code fragments, it is not
necessarily 20 times as likely that hhasNext,printi is a
true specification. As it is impossible to automatically and
retroactively distinguish between coincidental and deliber-
ate code clones, we approximate this metric using clone
detection techniques. We use the open-source PMD toolkit’s
clone detector to track likely copy-paste repetition. The
detector is based on the Karp-Rabin string matching
algorithm [33]. We express the measure of code cloning
for a given code fragment as the product of the length of the
code segment and the number of times it has been copied.

Code readability. Buse and Weimer developed a code
metric trained on human perceptions of readability or
understandability [9]. The metric uses textual source code
features—such as number of characters, length of variable
names, or number of comments—to predict how humans
would judge the code’s readability. Readability is defined
on a scale from 0 to 1, inclusive, with 1 describing code that
is highly readable. More readable code is less likely to
contain errors. We therefore hypothesize that more readable
code is also more likely to adhere to specifications. We use
the research prototype developed by Buse and Weimer to
measure the readability of source code [9].

Path feasibility. Our specification mining technique
operates on statically enumerated traces, which can be
acquired without indicative workloads or program instru-
mentation. Infeasible paths are an unfortunate artifact of
static trace enumeration, and we claim that they do not
encode programmer intentions. Merely discounting prova-
bly infeasible paths may confer some benefit to the mining

process. However, infeasible paths may suggest pairs that
are not specifications: A programmer may have made it
impossible for b to follow a along a path, suggesting that
ha; bi is not required behavior. We prefer static paths for our
purposes first because they are both easier to obtain and
more complete than dynamic paths. In addition, we
hypothesize that static paths combined with symbolic
execution can provide additional useful information about
behavior the programmer believes should be impossible.
We measure the feasibility of a path using symbolic
execution; a path is infeasible if a theorem prover reports
that its symbolic branch guards are inconsistent. Path
feasibility is expressed as one of f0; 0:5; 1g; 0 denotes an
infeasible path, 1 a required path, and 0.5 a path that may or
may not be feasible or required.

Path frequency. We theorize that common paths that are
frequently executed by indicative workloads and test cases
are more likely to be correct. First, the programmer may
reason more thoroughly about the “common case,” and
second, highly tested code is less likely to contain errors.
We use a research tool that statically estimates the relative
runtime frequency of a path through a method [10],
normalized as a real number.

Path density. We hypothesize that a method with more
possible static paths is less likely to be correct because there
are more corner cases and possibilities for error. We define
“path density” as the number of traces it is possible to
enumerate in each method, in each class, and over the entire
project. A low path density for traces containing paired
events ab and a high path density for traces that contain
only a suggest that ha; bi is a likely specification. Path
density is expressed in whole numbers and can be normal-
ized to the maximum number of enumerated paths
(30/method, in our experiments).

Metrics in the second class (“complexity metrics”) are:
Cyclomatic complexity. McCabe defined cyclomatic com-

plexity [44] to quantify the decision logic in a piece of
software. A method’s complexity is defined as M ¼ E �
N þ 2P , where E is the number of edges in the method’s
control flow graph, N is the number of nodes, and P is the
number of connected components. There is no theoretical
upper bound on the complexity of a method. The complex-
ity of an intraprocedural trace is the complexity of its
enclosing method. Previous work suggests that Cyclomatic
complexity correlates strongly with the length of a function
and does not correlate well with errors in code [22], [50].
Despite this, Cyclomatic complexity remains in industrial
use [48]. We hypothesize that complexity will not helpfully
contribute to our specification mining model.

CK metrics. Chidamber and Kemerer proposed a suite of
theoretically grounded metrics to approximate the complex-
ity of an object-oriented design [12]. The following six
metrics apply to a particular class (i.e., a set of methods and
instance variables):

. Weighted methods per class (WMC). Number of
methods in a class, weighted by a user-specified
complexity metric. Common weights selected in
practice are 1, the method length, or the method’s
Cyclomatic complexity. The experiments in this
paper weight all methods equally (weight ¼ 1).

LE GOUES AND WEIMER: MEASURING CODE QUALITY TO IMPROVE SPECIFICATION MINING 179

. Depth of inheritance tree (DIT). Maximal length
from the class to the root of the type inheritance tree.

. Number of children (NOC). Number of classes that
directly extend this class.

. Coupling between objects (CBO). Number of other
objects to which the class is coupled. Class A is
coupled to Class B if one of them calls methods or
references an instance variable defined in the other.

. Response for a class (RFC). Size of the response
set, defined as the union of all methods defined by
the class and all methods called by all methods in
the class.

. Lack of cohesion in methods (LOCM). Methods in a
class may reference instance variables in that class. P
is the set of methods in a class that share in common
at least one instance variable with at least one other
class method. Q is the set of methods that do not
reference instance variables in common. LOCM is
jP �Qj if jP �Qj > 0 and 0 otherwise.

The CK metrics are also sometimes used in industry to
measure design or system complexity. Research on their
utility has yielded mixed results—studies have correlated
subsets of the metrics with fault proneness, though they do
not tend to agree on which subsets are predictive [7], [52], [54].

4.2 Mining Algorithm Details

Our mining algorithm extends our previous WN miner [38],
[59], notably by including quality metrics from Section 4.1.
Our miner takes as input:

1. The program source code P . The variable ‘ ranges
over source code locations. The variable l represents
a set of locations.

2. A set of quality metrics M1 . . .Mq. Quality metrics
may map either individual locations ‘ to measure-
ments, with Mið‘Þ 2 IR (e.g., code churn) or entire
traces to measurements, where MiðlÞ 2 IR (e.g., path
feasibility).

3. A set of important events �, generally taken to be all
of the function calls in P . We use the variables a, b,
etc., to range over �.

Our miner produces as output a set of candidate
specifications C ¼ fha; bi j a should be followed by bg. We
manually evaluate candidate specification validity.

Our algorithm first statically enumerates a finite set of
intraprocedural traces in P . Because any nontrivial program
contains an infinite number of traces, this process requires
an enumeration strategy. We perform a breadth-first
traversal of paths for each method m in P . We emit the
first k such paths, where k is specified by the programmer.
Larger values of k provide more information to the mining
analysis with a corresponding slowdown. Experimentally,
we find that very large k provide diminishing returns in the
tradeoff between correctness and time/space. Typical
values are 10 � k � 30. To gather information about loops
and exceptions while ensuring termination, we pass
through loops no more than once, and assume that branches
can be either taken or not and that an invoked method can
either terminate normally or raise any of its declared
exceptions. Thus, a path through a loop represents all paths
that take the loop at least once, a nonexceptional path
represents all nonexceptional paths through that method,

etc. This approach is consistent with other researchers’ path
enumeration strategies, including those used by some of
our metric-collection techniques [10]. We find that the level
of detail provided by this strategy is adequate for our
purposes, but note that it is possible to collect additional
detail, such as by increasing the number of loop iterations.

This process produces a set of traces T . A trace t is a
sequence of events over �; each event corresponds to a
location ‘. We write a 2 t if event a occurs in trace t and
a . . . b 2 t if event a occurs and is followed by event b in that
trace. We note whether a trace involves exceptional control
flow; this judgment is written ErrorðtÞ.

Next, our miner lifts quality metrics from individual
locations to traces, where necessary. This lifting is parametric
with respect to an aggregation function A : PðIRÞ ! IR. We
use the functions max, min, span, and average to summarize
quality information over a set of locations l. MA denotes a
quality metric M lifted to traces: MAðtÞ ¼ AðfMð‘Þj‘ 2 tgÞ
(metrics that operate over sets of locations do not need to be
aggregated;MAðtÞ ¼MðlÞwhere l is the set of locations in t).
M denotes the metric lifted again to work on sets of traces:
MðT Þ ¼ AðfMAðtÞjt 2 TgÞ.

Finally, we consider all possible candidate specifications.
For each a and b in �, we collect a number of features. Fig. 3
shows the set of features our miner uses to evaluate a
candidate specification ha; bi. Nab denotes the number of
times b followsa in a nonerror trace.Na denotes the number of
times a occurs in a normal trace, with or without b. We
similarly write Eab and Ea for these counts in error traces.
SPab ¼ 1 when a and b are in the same package. DFab ¼ 1
when dataflow relates a and b: when every value and receiver
object expression in b also occurs in a [59, Section 3.1]. z is the
statistic for comparing proportions used by the ECCminer to
rank candidate specifications. The set of features further
includes the aggregate quality for each lifted metric MA. We
writeMiab (resp.,Mia) for the aggregate metric values on the
set of traces that contain a followed by b (resp. contain a). As
we have multiple aggregation functions and metrics, Mia

actually corresponds to over a dozen individual features.
When combined with the aforementioned statistical

measurements and frequency counts, each pair ha; bi is
described by over 30 total features fi. We avoid asserting an
a priori relationship between these features and whether a
pair represents a true specification. Instead, we will build a

180 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

Fig. 3. Features used by our miner to evaluate a candidate specification
ha; bi. Mi is a quality metric lifted to sets of traces.

classifier that examines a candidate specification and, based
on learned a linear combination of its feature values,
determine whether it should be emitted as a candidate
specification. A training stage, detailed in Section 5, is
required to learn an appropriate classifier relating features
to specification likelihood.

5 EXPERIMENTS

In this section, we empirically evaluate our approach. We
begin by explaining how we build a model relating code
quality metrics to the likelihood that a candidate is a true
specification, and how this model can be used as a
specification miner. We use this model to evaluate several
research questions:

1. Our first set of experiments evaluates the predictive
power and statistical independence of the code
quality metrics.

2. Our second experiment provides evidence that our
metrics improve existing techniques for automatic
specification mining.

3. Our final experiment measures the efficacy of our
new specification miner in terms of mined specifica-
tion utility and false positive rate, using previous
techniques as a baseline.

We perform our evaluation on the 12 open-source Java
benchmarks shown in Fig. 4. Several of these programs
allow a direct comparison with previously published results
[25], [38], [57], [59], [61]: hibernate, axion, hsqldb,
cayenne, jboss, mckoi-sql, and ptolemy2. We do not
need source code implementing a particular interface;
instead, we generate traces from the client code that uses
that interface (as in [3], [19], [25], and [61]); we thus mine
both specifications specific to a particular benchmark as
well as library-level API requirements. We restrict attention
to programs with CVS or SVN source control repositories
since such information is necessary for certain metrics. For
the purposes of consistent data collection, we use the
cvssuck utility to convert CVS repositories to SVN
repositories. We used the blame command in SVN to
collect author information, and info to collect churn
information. We statically enumerated up to 30 traces per
method per benchmark.

Our technique is relatively efficient. The most expensive
operation is computing path feasibility, as it requires
multiple calls to a theorem prover (we use simplify [17]).
Computing feasibility on the mckoi-sql, our median
benchmark, took 25 seconds on a 3 GHz Intel Xeon machine.
Enumerating all static traces for mckoi-sql, with a
maximum of 30 traces per method, took 912 seconds in total;
this happens once per program. Collecting the other metrics
for mckoi-sql is relatively inexpensive (e.g., 6 seconds for
readability, 7 seconds for path frequency). The actual mining
process (i.e., considering the features for every pair of events
in mckoi-sql against the cutoff) took 555 seconds. The total
time for our technique was about 30 minutes per 100,000 lines
of code.

5.1 Learning a Model

First, we construct a linear model that, given a set of features
associated with a potential ha; bi pair, determines whether it
should be output as a candidate specification. We use linear
regression to learn the coefficients ci and a cutoff , such that
our miner outputs ha; bi as a candidate specification iffP

i cifi > cutoff . In other words, a specification is emitted if
the linear combination of its features weighted by the
coefficients exceeds the cutoff. A notable weakness of linear
regression is that we do not know a priori if the proposed
features are related linearly; it is possible for the features to
have a nonparametric relationship. Accordingly, we add the
log, absolute value, square, and square root of each feature
vector to the testing and training sets.3

Linear regression requires annotated answers (in our case,
a set of known-valid and known-invalid specifications). Our
training set consists of valid and invalid specifications mined
and described in previous work [57], [59] and manually
annotated specifications from the new benchmarks. We used
the source code of a and b, surrounding comments, source
code in which a and bwere either adhered to or violated, and
related documentation (such as the Hibernate APIT
documentation) to evaluate whether a candidate specifica-
tion represented a true or false positive. A potential threat to
the validity of the model is overfitting by testing and training
on the same data. We must therefore verify that our miner is
not biased with respect to our training data. We mitigate this
threat with 10-fold cross validation [35]. We randomly
partition the data into 10 sets of equal size. We test on each
set in turn, training on the other nine; in this way, we never
test and train on the same data. Bias is suspected if the average
results of cross validation (over many random partitionings)
are different from the original results. The difference was less
than 0.01 percent for our miner, indicating little or no bias.4

We evaluate potential models with recall and precision.
Recall measures the probability that a given real specifica-
tion is returned by the algorithm, expressed as the fraction

LE GOUES AND WEIMER: MEASURING CODE QUALITY TO IMPROVE SPECIFICATION MINING 181

Fig. 4. Open-source Java benchmark set.

3. A logistic model, which fits features to a probability range between 0
and 1, would also naturally fit our task. However, such a model still
requires a training phase to produce a binary classifier. As the same work is
required to employ either type of model, we prefer a linear model because it
admits straightforward statistical analyses and, in practice, is sufficiently
accurate.

4. We perform cross validation in lieu of partitioning our data set
because it allows us to evaluate on more benchmarks, lines of code, and
specifications, supporting the generality of our technique, while still
establishing that the technique is not biased by overfitting.

of real specifications returned out of all known real
specifications. Precision measures the probability that a
returned candidate specification is a true specification,
expressed as the fraction of candidate specifications that are
true positives. A high recall indicates that the miner is
doing useful work (i.e., returning real specifications), but
without a corresponding high precision, real specifications
drown in a sea of false positives. An information retrieval
task can trivially maximize either precision or recall be
returning nothing (all returned elements are true positives)
or everything (all true positives are returned along with
everything else). Accordingly, information retrieval tasks
may measure the harmonic mean of precision and recall,
known as the f-measure. Given the set of coefficients, we
perform a linear search to find a cutoff that maximizes one
of these functions. Our normal miner maximizes f-measure;
our precise miner maximizes precision (yielding very few
false positives). We do not build a miner to maximize recall
because our dominant concern is reducing false positives.

5.2 Predictive Power of Quality Metrics

In this section, we evaluate the coefficients of the linear
model to understand the overall predictive power of each of
our proposed quality metrics, compare the utility of the
metrics on different benchmarks and qualitatively analyze
observed differences, and establish the independence of
many of the quality metrics.

5.2.1 Quality Metrics across All Benchmarks

Our first experiment evaluates the relative importance of

our quality metrics. We perform a per-feature analysis of
variance on the linear model; the results are shown in Fig. 5.

All of the quality metrics defined in Section 4.1, except
Cyclomatic complexity, had a significant main effect
(p � 0:05). The code churn metric, encoding how frequently
and recently a line of code has been changed in the source
control repository, was our most important feature. Path
feasibility is of moderate predictive power; it is, to our
knowledge, the only feature that had been previously
investigated in the context of mining [2].

The author rank metric is significantly predictive in this
analysis, overturning previous observations [38] that it has
little predictive power. These experiments involve a much
larger benchmark set (1.5 M versus 0.8 M LOC). In addition,
we enumerate 30 traces per method; in previous work, we
enumerated 10. These differences appear to account for the
change: On these benchmarks, author rank increases in
importance by 50 percent for every 10 additional traces per
method generated between 10 and 30. The previous set of
benchmarks may have been insufficiently varied and the
previous set of traces insufficiently deep, resulting in an
imprecise model.

We also evaluated the predictive power of traditional
complexity metrics: Cyclomatic complexity and the six CK
metrics for object-oriented design complexity (recall that we
weight all methods equally for the purposes of the WMC
metric). Our analysis of variance shows that Cyclomatic
complexity has no significant effect on the model, and is not
predictive for whether code conforms to specifications for
correct behavior. This is consistent with previous research
suggesting that Cyclomatic complexity is not predictive for
code faults [22], [50]. The six CK metrics, however, vary in
predictive power, though all have a significant main effect.
With the exception of response for a class, which is meant to
approximate the interconnectedness of the design, the CK
metrics are less predictive than the other proposed quality
metrics. These results suggest that the CK metrics may
indeed capture an element of code quality or complexity,
though they vary in their ability to do so.

In our previous work that examined the relationship
between error traces and specification false positive rates
[59], we used several criteria to select candidate pairs: Every
event b in an event pair must occur at least once in
exception cleanup code (“Exceptional Path”), there must be
at least one error trace with a but without b (“One Error”),
both events must be declared in the same package (“Same
Package”), and every value and receiver object expression
in b must also be in a (“Dataflow”). We included these
features in our model to determine their predictive power.
The results are shown in the lower section of Fig. 5. The
“Exceptional Path” and “One Error” conditions affect the
model quite strongly, while the “Same Package” and
“Dataflow” conditions are less significant. They are not as
predictive as Code Churn, our most predictive metric.

5.2.2 Quality Metrics between Benchmarks

The previous experiment analyzed the relative importance
of the quality metrics across all 12 benchmarks. This section
qualitatively explores factors that affect the predictiveness
of our features by comparing the predictive power of the
metrics on each benchmark. We present a nonexhaustive set
of observations about benchmark features that appear to
relate to metric power. This analysis provides insight into

182 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

Fig. 5. Analysis of variance of features in our model. The F column
displays a feature’s F -ratio: the square of the variance in the model
explained by a feature over the variance not explained. The p column
shows the probability that the feature does not affect the miner. F values
approaching 1 indicate lack of predictive power; p � 0:05 indicates
statistical significance. The bottom four features are present in the WN
miner [59].

factors that may affect the metrics’ predictive power, such
as a particular development methodology. The purpose of
this discussion is to explore the circumstances under which
the proposed technique is useful, and under which it may
be misled.

To explore this area, we built individual specification
mining models for each of our benchmarks using the
technique described in Section 5.1, and perform analyses of
variance on each model, noting outliers. We omit the full
results in the interest of brevity. Several interesting patterns
emerge, however.

First, benchmark size appears to influence the uniformity
of our results. axion, one of our smaller benchmarks, is an
outlier on several of our metrics. ptolemy, our largest
benchmark, displays the most uniform behavior, displaying
no outlier behavior with any metric. This is encouraging:
We expect that the largest, most well-established programs
are the most general and thus the least likely to contain
anomalous behavior for a predictive model, a trend that
generally holds here.

The presence of explicit testing code (e.g., JUnit unit
tests) appears to influence the relative predictive strength of
Frequency, Author Rank, and Path Density. Unit testing
code tends to be straightforward (in our benchmarks, unit
test classes are shorter than 100 lines each, on average),
follows implicit specifications, and is designed to check
correct program behavior, and is therefore likely to probe
and assert that correct behavior. Paths through testing
classes are therefore both likely to be correct and also to be
executed with high frequency relative to their enclosing
methods. A notable outlier on these three metrics is axion,
which ships with a comprehensive unit test suite that
comprises a full 48 percent of the codebase. Frequency is
more predictive on axion than several of the other metrics
(F ¼ 22:8; p ¼ 0:001), as is Author Rank (F ¼ 10:1; p ¼
0:015), likely because the entire test suite appears to have
been written by one author. This author likely wrote correct
code, and thus that one programmer’s rank is the most
likely factor in the high predictive power of author rank on
the axion benchmark. Path density is strongly predictive
on the axion (F ¼ 22:8; p < 0:0001) and jboss (F ¼ 21:3;
p < 0:0001) benchmarks. jboss also ships with a large
number of JUnit unit tests. As unit testing methods are
very simple, in general, they also have low density, and
thus low density is predictive of specification validity.

The predictive power of code clones appears related to
the amount of code that is marked as copied in a bench-
mark: In the limit, if a project contains no duplicate code, the
metric is uniformly zero and has no predictive power. The
metric is very strongly predictive on hibernate

(F ¼ 81:8; p < 0:0001). The PMD toolkit marks 0.8 percent
of hibernate’s code as cut and paste. This figure is twice
as high as that of the benchmark with the next highest
percentage, jboss (on which the metric is also strongly
predictive). This metric is not predictive on mckoi-sql

(F ¼ 0:6; p ¼ 0:424), which has the lowest percentage of
copied and posted code (0.03 percent).

The predictive power of code churn appears similarly
correlated with the total number of revisions on a given
benchmark—that is, it improves with the granularity of

code churn judgments and cannot help for projects that

contain only one revision. The hsqldb 1.7.1 release

contained 72 revisions in the svn repository, while

mckoi-sql had undergone 594 (relatively few compared

to its size); on these benchmarks, this metric is not very

predictive (F ¼ 3:3; p ¼ 0:070 and F ¼ 3:9; p ¼ 0:047, re-

spectively). Comparatively, tvbrowser had undergone

5,706 revisions, jfreechart 2,056, and cayenne 1,961.

Correspondingly, tvbrowser, and jfreechart had F

values of 22.0 and 33.4, respectively, with p values < 0:0001.
The number of conditionals in a program is relevant to

feasibility’s predictive power: A path cannot be marked

infeasible by static analysis if there are no conditional guards

along it. Programs with more conditional guards potentially

contain more paths that can be marked infeasible. To gain

additional insight, we counted the number of if or while

constructs appearing in our benchmarks’ source code.

ptolemy, on which feasibility is comparatively highly

predictive (F ¼ 7:3; p ¼ 0:007), contains approximately

seven times as many conditional guards as axion, on which

the metric is not predictive (F ¼ 1:0; p ¼ 0:311). This ratio of

guards to feasibility predictive power holds for all bench-

marks except for mckoi-sql, which contains fewer condi-

tionals than this hypothesis predicts. Note thatif andwhile

also increase CFG edges and connected components, which

are key parts of Cyclomatic complexity and some CK metrics,

but feasibility is much more predictive. We hypothesize that,

because an external theorem prover reasons about conflicting

information, feasibility contains richer semantic information.

Number of edges, connected components, and Cyclomatic

complexity all correlate strongly with method length; they

indicate only which paths contain many branch points. They

do not speak to which paths are required or impossible,

information which brings more to bear on whether or not a

candidate event pair represents required behavior (as

hypothesized in Section 4.1, event pairs that must follow

one another may be more likely to represent required

behavior; those that cannot follow one another on a given

path are more likely to not represent required behavior).
We conclude by observing that statically predicted path

frequency and code churn are highly predictive on all

benchmarks. These metrics may apply more universally

because they are independent of local developer choice (cf.

readability). Both code churn and path frequency implicitly

take advantage of previous testing and validation work

done by human developers: Code that has not been churned

recently is presumably behaving correctly on the test suite

or in deployment, and path frequency similarly points to

code which is likely to be frequently executed on indicative

workloads. Code that is well tested, and thus conforms to

specifications, is likely to have low churn values and high

frequency values. Conversely, metrics such as author rank

or code clones are most useful in certain corner cases: Not

all development organizations will have relatively novice

programmers or a plethora of duplicate code.
These observations provide insight into the nature of our

metrics, their strengths and weaknesses, and their varia-

bility between software projects.

LE GOUES AND WEIMER: MEASURING CODE QUALITY TO IMPROVE SPECIFICATION MINING 183

5.2.3 Correlation between Quality Metrics

The final part of our first experiment provides empirical

evidence that our quality metrics are distinct. Fig. 6 shows
the results of performing pairwise Pearson correlation
calculations between all metric pairs across the entire bench-
mark set. A correlation coefficient may range between �1:0
and 1:0, where�1:0 indicates that the two variables analyzed
are linearly equivalent. A common heuristic for interpreting
the magnitude of a correlation holds that correlations
between 0:0 and �0:2 are very small [26].5 All correlations
have p < 0:0001 and are considered significant. According to
this heuristic, most statistically significant quality metric
pairs are uncorrelated. Code churn and code clones are very
slightly correlated (0.24); however, it is logical that code
cloning will increase with repository age and size. Read-
ability and Cyclomatic complexity are weakly correlated
(0.38); both are known to correlate with path length [9], [44].

Several of the CK metrics do correlate with one another.
CBO correlates weakly with RFC (0.33), and more strongly
with LOCM (0.56); RFC correlates strongly with WMC
(0.77). The CK metrics were designed together to approx-
imate the complexity of an object-oriented design using
easily identifiable features of its type definitions. Most of
the metrics, with the exception of DIT (which does not
correlate with the others), are defined in terms of number of
methods called, defined, or used in the class; some
interdependence is to be expected. WMC and RFC are the
only complexity metrics that correlate notably with a
quality metric: density (as expected, since density is defined
both in terms of the number of paths through a method as
well as the number of paths through a class, which is
influenced by the number of methods defined in the class).
The stronger correlations between the CK metrics them-
selves and between the CK metrics and the quality metrics
may partially explain their lesser utility when actually
applied to specification mining, an issue explored in greater
detail in Section 5.4.

A potential threat to the validity of our hypothesis is that
the proposed metrics may be correlated. The results shown
in Fig. 6 mitigate this threat by suggesting that the proposed
quality metrics are not linear combinations of one another.
To corroborate these results, we performed a Principal
Components Analysis (PCA) on the quality metrics. A PCA
can indicate the number of components in a set of features
that contribute to the overall variance in the system. Given
the seven features in the set of quality metrics, the PCA
revealed that a combination of six is necessary to account
for 99 percent of the overall data variance. This result is
consistent with our correlation calculations above. Taken
together, the analyses support our claim first that the
metrics we propose describe independent aspects of code
quality, and second that, with one exception, the quality
metrics do not strongly correlate with the complexity
metrics. Further study is required to more comprehensively
investigate the relationship between the metrics and their
relationship to quality in other applications.

5.3 Quality Matters for Specification Mining

Our second experiment presents empirical evidence that
our quality metrics improve an existing technique for
automatic specification mining. For each of our bench-
marks, we run the unmodified WN miner [59] on multiple
input trace sets of varying levels of quality. The quality of a
trace is defined as a linear combination of the metrics from
Section 4.1, with coefficients based on their relative
predictive power for specification mining (the F column
in Fig. 5); we use this measurement to sort the input trace
set from highest to lowest quality. We compare WN’s
performance on random baseline sets of static traces to its
performance on high-quality (and low-quality) subsets of
those traces. For generality, we restrict attention to feasible
traces, since other miners such as JIST already disregard
infeasible paths [2].

In total on all of the benchmarks, WN miner produces
86 real specifications. On average, WN finds all of the same
specifications using only the top 45 percent highest quality
traces: 55 percent of the traces can be dispensed with
while preserving true positive counts. Since static trace

184 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

Fig. 6. Pearson correlation coefficients r between the different metrics measured across all benchmarks. jrj � 0:2 is considered low-to-no
correlation, 0:2 < jrj � 0:5 is considered a weak correlation [26]. p < 0:0001 for all correlations.

5. Some work suggests that �0:3 signifies no correlation; in general,
cutoffs for interpreting correlations are heuristics.

enumeration can be expensive and traces are difficult to
obtain [57], reducing the costs of trace gathering by a
factor of 2 is significant. As a point of comparison, when a
random 55 percent of the traces are discarded, we find
only 58 true specifications in total (67 percent of the total
possible set), with a 3 percent higher rate of false positives.

We next explore the impact that the quality of a trace set
has on mining success by passing proportions of the total
input set (all traces from all benchmarks) to the WN miner.
We perform mining on the top N percent of the traces (the
“High-Quality” traces), the bottom N percent of the traces
(the “Low-Quality” traces), and a random N percent of the
traces. For the “Random” results, we presented the average
of five runs on different random subsets; error bars denote
one standard deviation in either direction.

Fig. 7 presents the results of this experiment by showing
the percentage of the total specification set mined by WN at
each trace set size for sets of high, random, and low-quality
traces. We conclude that trace quality has a strong impact
on the success of the miner. First, the higher quality traces
allow the miner to find more specifications on smaller input
sets than do the randomly selected traces; the low-quality
traces consistently yield far fewer true specifications. To
highlight one point on the graph: On 25 percent of the
input, the high-quality traces yield 65 percent of the total
possible mined specifications. By contrast, the random
traces yield less than half, at 43 percent, and the low-quality
traces, only 2 percent (only two true specifications!). By the
time the top-quality traces have yielded all possible true
specifications, the random traces have found 88 percent,
and the low-quality traces, 63 percent.

This trend holds at all data points except at 10 percent of
the input, where the random subsets yielded a very slightly
higher percentage of total specifications found. However, the
difference in the number of specifications mined is very low:
Only three additional true specifications are found on the
random subset. More importantly, the difference in the false
positive rate high quality versus the random traces is most

marked on smaller subsets: At both 5 and 10 percent, the
miner has a false positive rate of 83 percent on high-quality
traces and 89 percent on random traces. Although false
positive rate is not shown in Fig. 7, the miner finds a lower
rate of false positives on the high-quality traces than on the
random traces 85 percent versus 89 percent, on average.

Trace generation is often a bottleneck for static specifica-
tion mining techniques. We claim that, in general, high-
quality traces should be pursued and low-quality traces
should be skipped. Our quality metrics could therefore
improve any static trace-based specification miner (e.g., [20],
[25], [61]). These results also have implications for multiparty
techniques to mine specifications collaboratively by sharing
trace information [57]: Focus should be placed on sharing
information from high-quality traces. Further, this experi-
ment suggests that our notion of code quality generalizes
beyond our particular mining application/implementation.

5.4 Quality-Based Specification Mining

Our main experiment measures the efficacy of our new

specification miner. The miner uses features from previous
miners and the quality metrics proposed in Section 4.1; it
excludes complexity metrics. We omit Cyclomatic complex-
ity because it is not predictive in the linear model (Section 5.2).
A leave-one-out analysis shows that including the CK metrics
in the model raises both the true and false positive rates. As
our goal is useful specifications with few false positives, we
omit features, even those that are predictive for true positives,
that increase the false positive rate substantially.

Fig. 8 shows the results of applying the new miners to
the benchmarks in Fig. 4. For each benchmark, we report
the number of true and false positive candidates returned
(determined by manual verification). Recall the normal
miner minimizes both false positives and negatives, while
our precise miner minimizes false positives. For compar-
ison, we also show results of the WN [59] and ECC [20]
mining techniques. These miners were chosen for compar-
ison because of their comparatively low false positive rates;

LE GOUES AND WEIMER: MEASURING CODE QUALITY TO IMPROVE SPECIFICATION MINING 185

Fig. 7. Performance of the WN specification miner on subsets of the total trace set. “Random” points are an average of five randomly selected
subsets. “High quality” quality are the top N percent of the traces when sorted by quality. The y-axis shows the percentage of the possible true
specifications mined. The false positive rate on high quality (85 percent) is lower than on random (89 percent).

other methods produce even more candidates. On jboss,
the Perracotta miner produces 490 candidate two-state
properties, which the authors say “is too many to reason-
ably inspect by hand” [61]. Gabel and Su report mining over
13,000 candidates from hibernate [25]. Finally, as a
heuristic for measuring mined specification utility, we
report the number of distinct methods that violate the valid
mined specifications (i.e., the number of potential policy
violations found by a bug-finding tool using that specifica-
tion). Each method is counted only once per specification,
even if multiple paths through that method violate it. See
[58, pp. 423-425] for a survey of the bugs found in these
benchmarks.

The normal miner finds useful specifications with a low
false positive rate. It improves on the false positive rate of
WN by 26 percent, while still finding 72 percent of the same
specifications. It finds four times as many true specifications
as ECC. Moreover, the specifications that it finds find more
violations on average than those found by WN: 884 violations,
or 13 per valid specification, compared to WN’s 426, or seven
per valid specification.

The precise miner produces only one false positive, on
Hibernate: hS.beginTransaction, T.commiti. Fig. 9
shows the relevant API. The candidate behavior is not
required because one can legally call T.rollback instead
of T.commit. However, there are no traces on which the
false candidate is followed on which the true specification is

not, and very few on which the false candidate is violated
while the true candidate is not. Our technique therefore
cannot distinguish between the two sets of traces, because
their quality measurements are nearly identical. This
example suggests that further study is needed to help
distinguish between extremely common and required
behavior. However, we are encouraged by the fact that
none of the other APIs demonstrated such behavior, and
believe that this implies that our model for specification
form and behavior is reasonable in practice.

The precise miner finds fewer valid specifications than
either the normal miner or the WN miner (it finds almost
twice as many true specifications as the ECC technique), but
its 3 percent false positive rate approaches levels required
for automatic use. Despite the one false positive and the fact
that it finds 34 percent as many specifications as WN, the
precise miner still finds 53 percent of the violations: Each
candidate inspected yields 11 violations on average. This
suggests that the candidates found by the precise miner are
among the most useful. Users are often unwilling to wade
through voluminous tool output [20], [31]; with a 3 percent
false positive rate, and more useful specifications, we claim
that our precise miner might be reasonable in both
interactive and automatic settings.

5.5 Threats to Validity

There are several threats to the validity of our results. First,
they may not generalize to the programs built in industrial
practice because our benchmark set may not be representa-
tive, representing a threat to external validity. We believe
that the addition of approximately 650 k LOC of benchmarks
compared to previous work mitigates this threat. Moreover,
the additional benchmarks are taken from a variety of areas,
ranging from dynamic content generation (jedit) to a TV
guide (tvbrowser). We feel that the size and breadth of our
benchmarks mitigate this threat significantly.

The first threat to construct validity is overfitting of our
model to the training data. We use cross validation in

186 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

Fig. 8. Comparative mining results on 1.5 M LOC. “Specs” indicates valid specifications, “False” indicates false positive specifications, “Bugs” totals,
for each valid specification found, the number of distinct methods that violate it. The two left headings give results for our Normal Miner and our
Precise Miner; WN and ECC are previous algorithms.

Fig. 9. A finite state machine describing the Hibernate Session API,
from the Hibernate documentation.

Section 5.4 to demonstrate that our results are not biased by
overfitting. A second such threat lies in our manual
validation of output candidate specifications: Our human
annotation process may mislabel the output used for both
training and testing. We mitigated this threat by using the
source code that both defined and made use of a and b, and
related documentation and comments, as available, to
evaluate ha; bi. Specifications were annotated by more than
one researcher over the course of development. We also
rechecked a fraction of our judgments at random. In
addition to spot-checking specification validity over the
course of our experiments, we performed a systematic
check by reevaluating 120 randomly selected annotated
specifications. This set included both true and false positive
specifications. Our reevaluation identified one falsely
labeled candidate, an error rate of less than 1 percent.

A final threat lies in our use of “bugs found” as a proxy
for specification utility. First, we do not validate the veracity
of each reported violation and, given the imprecision of
static trace generation, we cannot be certain that every
reported violation represents a true error. Moreover, while
our mined specifications find more policy violations than
those returned by previous techniques, they may not be as
useful for tasks such as documenting or refactoring.
However, this highlights the fact that the errors identified
by a given specification are not the only measurement of its
potential utility. Even if this measure of success is imprecise
at best, specifications remain important components of the
software engineering process, and our focus on a low false
positive rate is an important first step toward industrial
practicality of mining approaches. We leave further
investigation of specification utility for future work.

6 RELATED WORK

Our work is most related to the two distinct fields of
specification mining and software quality metrics.

6.1 Previous Work in Specification Mining

Some of the research presented in this paper was previously
presented [38], [59]. This paper expands on those papers by
providing:

. A motivating example that compares similar candi-
date specifications to highlight our insights.

. Additional benchmarks, bringing the size of the
benchmark set from 866,000 to 1.6 million LOC.

. A more complex statistical analysis of the predictive
power of the metrics. We qualitatively and quantita-
tively explore factors affecting predictive power, and
situate our work in software metric research.

. A comparison of the utility of these metrics to classic
complexity metrics (Cyclomatic complexity [44] and
the CK metrics for object-oriented design complexity
[12]) and other previously proposed metrics in the
context of specification mining [59].

. A more detailed study of the effects of trace quality
on an existing mining technique.

This work is closely related to existing specification
mining algorithms, of which there are a considerable
number (see [59] for a survey). Our approach extends
the ECC [20] and WN [59] techniques. Both mine two-state

temporal properties (referred to as specifications in this
paper) from static program traces, and use heuristics and
statistical measures to filter true from false positives. WN
improves on the results of ECC by narrowing the criteria
used to select candidate specifications (e.g., the candidate
specification must expose a violation along at least one
exceptional path) and by considering additional source code
and software engineering features (e.g., whether the events
are defined in the same library or package). We formalize
both techniques in Section 4.2. We also use some of the same
benchmarks in our evaluation to allow explicit comparison,
and incorporate the features used by the previous miners
into our own.

Whaley et al. propose a static miner [60] that produces a
single multistate specification for library code. The miner
constructs a permissive policy that disallows ha; bi if
function b raises an undersirable exception when an object
field is set to a value that function a sets. The same work
proposes a dynamic miner that produces a permissive
multistate specification describing all observed behavior in
a set of dynamic traces. The JIST [2] miner refines Whaley
et al.’s static approach by using techniques from software
model checking to rule out infeasible paths. Perracotta
[61] mines multiple candidate specifications that match a
given FSM template. Gabel and Su [25] extend Perra-

cotta using BDDs, and show both that two-state mining is
NP-complete, and some specifications cannot be created by
composing two-state specifications. Strauss [3] uses
probabilistic finite state machine learning to learn a single
permissive specification from traces. GK-tail is a techni-
que for learning a finite state machine with edge con-
straints, called extended finite state machine (EFSM)
specifications [42]. EFSMs describe legal sequences of
program events subject to invariants on data values, such
as might be learned by Daikon [21]. Lo et al. use learned
temporal properties, such as those mined in this paper, to
steer the learning of finite state machine behavior models
[41]. Shoham et al. [51] mine by using abstract interpreta-
tion, where the abstract values are specifications.

Unlike the static miner in Whaley et al., JIST, Strauss,
and Shoham et al., we do not require that the user provide
important parts of the specification, such as the exceptions of
interest. Unlike Strauss, the Whaley et al. dynamic miner,
JIST, GK-tail, Lo et al., and Shoham et al., we produce
multiple candidate specifications rather than a single
specification; complex specifications are difficult to debug
and verify [4]. Unlike Perracotta or Gabel and Su, we
cannot mine more complicated templates (e.g., FSMs with
three states), though this is not intrinsic to our quality-metric-
based approach. Like ECC, WN, Gabel and Su, and others, our
miner is scalable. We do construct more complicated models
from mined temporal properties like Lo et al.; however, our
miner is tolerant of buggy input traces. We also evaluate the
learned models in terms of externally verified property
correctness (instead of whether the learned model accepts all
input traces, a common alternative definition of recall).
Notably, we evaluate on precision, which we feel is
important to the eventual adoption of automatic mining
techniques in industrial practice.

The primary difference between our miner and previous
static temporal-property miners is that we use code quality
metrics to weight input traces with a goal of low false

LE GOUES AND WEIMER: MEASURING CODE QUALITY TO IMPROVE SPECIFICATION MINING 187

positive rates. To our knowledge, no published miner that
produces multiple two-state candidates has a false positive
rate under 89 percent. We present two mining prototypes
that identify potentially useful specifications (in terms of
the number of identified potential violations): a normal
miner with a rate of 63 percent and a precise miner with a
rate of 3 percent.

6.2 Previous Work in Software Quality Metrics

A full survey of software quality metrics is outside the
scope of this paper; instead, we highlight several notable
approaches. Halstead proposed Software Science [29] (which
did not prove accurate in practice [30]) to provide easily
measurable, universal source code attributes. Function
Point Analysis (FPA) [1] estimates value delivered to a
customer, which can help approximate, for example, an
application’s budget, the productivity of a software team,
the software size or complexity, or the amount of testing
necessary. Cyclomatic complexity estimates the amount of
decision logic in a piece of software, and remains in
industrial use to measure code quality and impose limits on
complexity [48]. Chidamber and Kemerer proposed and
evaluated six metrics (referred to as the CK metrics in this
paper) to describe the complexity of an object-oriented
design [12]; these metrics appear to correlate with software
quality, defined as “absence of defects.” Several researchers
have explored this correlation [7], [52], [54], and others have
used the object-oriented metrics or design patterns to
predict software faults [28], [55].

We go farther than these metrics by examining addi-
tional software engineering artifacts to measure quality.
Unlike FPA, our work does not consider usefulness of code.
Unlike Software Science, our model does not assume an a
priori combination of features. However, we evaluate the
utility of both Cyclomatic complexity and of the CK metrics
in our model (see Section 5.2.1). We determined that
Cyclomatic complexity is not a useful measure of code
quality as applied to specification mining. This corroborates
previous research [22], [50] that found that certain popular
complexity metrics, Cyclomatic complexity in particular, do
not correlate with fault density. The CK metrics do have
some predictive strength in a linear model relating quality
to specification likelihood, but we find that including them
in a mining model increases false as well as true positives.

More recently, Nagappan and Ball analyzed the relation-
ship between software dependences, code churn (roughly,
the amount that code has been modified as measured by
source control logs), and postrelease failures in the
Windows Server 2003 operating system [45]. They show
that relative code churn, or the amount of churn in one
module as compared to a dependent module, is more
predictive of errors than absolute churn (which we use here).
This suggests that more sophisticated measures of churn
might be more predictive in our model. Graves et al.
similarly attempt to predict errors in code by mining source
control histories [27].

Like our work, these studies use features independent of
the source code to make predictions. Unlike our work, they
define quality as “absence of defects,” instead of “adher-
ence to specifications of correct behavior.” This suggests
that our use of detected errors as a proxy for specification

utility may be valid. The previous work supports our claim
that there is a relationship between code churn, complexity,
and quality.

7 CONCLUSION

Formal specifications have a variety of applications,
including testing, maintenance, optimization, refactoring,
documentation, and program repair. However, such speci-
fications are difficult for human programmers to produce
and verify manually, and existing automatic specification
miners that discover two-state temporal properties have
prohibitively high false positive rates. An important
problem with these techniques is that they treat all parts
of a program as equally indicative of correct behavior.
We instead measure code quality to distinguish between
true and false candidate specifications. Our metrics include
predicted execution frequency, code clone detection, code
churn, readability, and path feasibility, among others.
We also evaluate well-known complexity metrics when
used in specification mining.

Our approach improves the performance of existing
trace-based miners by focusing on high-quality traces.
Compared to previous work, we obtain equivalent results
using only 45 percent of the input and with a slightly, but
consistently, lower rate of false positives. Our technique can
also be used alone: We propose two new specification
miners and compare them to two previous approaches. Our
basic miner learns more specifications and identifies
hundreds more violations than previous miners while
presenting hundreds fewer false positive candidates, with
a false positive rate of 63 percent (versus the 89 percent rate
of previous work). When focused on precision, our
technique obtains a 3 percent false positive rate, an order-
of-magnitude improvement on previous work, and finds
specifications that locate hundreds of violations. To our
knowledge, this is the first miner of two-state temporal
properties to maintain a false positive rate under 89 percent.

A combination of independent, imperfect code quality
metrics may prove useful to other automatic static analyses
that look at source code to draw conclusions about code or
predict faults. We believe that our technique is an important
first step toward real-world utility of automated specifica-
tion mining, as well as to the increased use of quality
metrics in other analyses.

REFERENCES

[1] A.J. Albrecht, “Measuring Application Development Productiv-
ity,” Proc. IBM Application Development Symp., pp. 83-92, 1979.

[2] R. Alur, P. Cerny, P. Madhusudan, and W. Nam, “Synthesis of
Interface Specifications for Java Classes,” Proc. ACM SIGPLAN-
SIGACT Symp. Principles of Programming Languages, 2005.

[3] G. Ammons, R. Bodik, and J.R. Larus, “Mining Specifications,”
Proc. ACM SIGPLAN-SIGACT Symp. Principles of Programming
Languages, pp. 4-16, 2002.

[4] G. Ammons, D. Mandelin, R. Bodı́k, and J.R. Larus, “Debugging
Temporal Specifications with Concept Analysis,” Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation,
pp. 182-195, 2003.

[5] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C.
McGarvey, B. Ondrusek, S.K. Rajamani, and A. Ustuner, “Thor-
ough Static Analysis of Device Drivers,” Proc. ACM SIGOPS/
EuroSys European Conf. Computer Systems, pp. 103-122, 2006.

188 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

[6] T. Ball, “A Theory of Predicate-Complete Test Coverage and
Generation,” Proc. Int’l Symp. Formal Methods for Components and
Objects, pp. 1-22, 2004.

[7] V.R. Basili, L.C. Briand, and W.L. Melo, “A Validation of Object-
Oriented Design Metrics as Quality Indicators,” IEEE Trans.
Software Eng., vol. 22, no. 10, pp. 751-761, Oct. 1996.

[8] R.P.L. Buse and W. Weimer, “Automatic Documentation Inference
for Exceptions,” Proc. Int’l Symp. Software Testing and Analysis,
pp. 273-282, 2008.

[9] R.P.L. Buse and W. Weimer, “A Metric for Software Read-
ability,” Proc. Int’l Symp. Software Testing and Analysis, pp. 121-
130, 2008.

[10] R.P.L. Buse and W. Weimer, “The Road Not Taken: Estimating
Path Execution Frequency Statically,” Proc. Int’l Conf. Software
Eng., pp. 144-154, 2009.

[11] H. Chen, D. Wagner, and D. Dean, “Setuid Demystified,” Proc.
USENIX Security Symp., pp. 171-190, 2002.

[12] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476-
493, June 1994.

[13] J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu,
Robby, and H. Zheng, “Bandera: Extracting Finite-State Models
from Java Source Code,” Proc. Int’l Conf. Software Eng., pp. 762-765,
2000.

[14] M. Das, “Formal Specifications on Industrial-Strength Code—
From Myth to Reality,” Proc. Int’l Conf. Computer-Aided Verification,
p. 1, 2006.

[15] S.C.B. de Souza, N. Anquetil, and K.M. de Oliveira, “A Study of
the Documentation Essential to Software Maintenance,” Proc. Ann.
Int’l Conf. Design of Comm.: Documenting and Designing for Pervasive
Information, pp. 68-75, 2005.

[16] R. DeLine and M. Fähndrich, “Enforcing High-Level Protocols
in Low-Level Software,” Proc. ACM SIGPLAN Conf. Program-
ming Language Design and Implementation, pp. 59-69, 2001.

[17] D. Detlefs, G. Nelson, and J.B. Saxe, “Simplify: A Theorem Prover
for Program Checking,” J. ACM, vol. 52, no. 3, pp. 365-473, 2005.

[18] M. Di Penta and D.M. German, “Who Are Source Code
Contributors and How Do They Change?” Proc. Working Conf.
Reverse Eng., pp. 11-20, 2009.

[19] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking System
Rules Using System-Specific, Programmer-Written Compiler
Extensions,” Proc. Conf. Symp. Operating System Design and
Implementation, 2000.

[20] D.R. Engler, D.Y. Chen, and A. Chou, “Bugs as Inconsistent
Behavior: A General Approach to Inferring Errors in Systems
Code,” Proc. Symp. Operating System Principles, pp. 57-72, 2001.

[21] M.D. Ernst, J.H. Perkins, P.J. Guo, S. McCamant, C. Pacheco, M.S.
Tschantz, and C. Xiao, “The Daikon System for Dynamic
Detection of Likely Invariants,” Science of Computer Programming,
vol. 69, nos. 1-3, pp. 35-45, 2007.

[22] N.E. Fenton and N. Ohlsson, “Quantitative Analysis of Faults and
Failures in a Complex Software System,” IEEE Trans. Software
Eng., vol. 26, no. 8, pp. 797-814, Aug. 2000.

[23] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe,
and R. Stata, “Extended Static Checking for Java,” Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation,
pp. 234-245, 2002.

[24] S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff, “A
Sense of Self for Unix Processes,” Proc. IEEE Symp. Security and
Privacy, pp. 120-128, 1996.

[25] M. Gabel and Z. Su, “Symbolic Mining of Temporal Specifica-
tions,” Proc. Int’l Conf. Software Eng., pp. 51-60, 2008.

[26] L.L. Giventer, Statistical Analysis in Public Administration. Jones
and Bartlett, 2007.

[27] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy, “Predicting Fault
Incidence Using Software Change History,” IEEE Trans. Software
Eng., vol. 26, no. 7, pp. 653-661, July 2000.

[28] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical Validation of
Object-Oriented Metrics on Open Source Software for Fault
Prediction,” IEEE Trans. Software Eng., vol. 31, no. 10, pp. 897-
910, Oct. 2005.

[29] M. Halstead, Elements of Software Science. Elsevier, 1977.
[30] P.G. Hamer and G.D. Frewin, “M.H. Halstead’s Software Science -

A Critical Examination,” Proc. Int’l Conf. Software Eng., pp. 197-
206, 1982.

[31] D. Hovemeyer and W. Pugh, “Finding Bugs Is Easy,” Proc.
Companion to the 19th Ann. ACM SIGPLAN Conf. Object-
Oriented Programming Systems, Languages, and Applications,
pp. 132-136, 2004.

[32] C. Kapser and M.W. Godfrey, “‘Cloning Considered Harmful’
Considered Harmful,” Proc. Working Conf. Reverse Eng., pp. 19-28,
2006.

[33] R.M. Karp and M.O. Rabin, “Efficient Randomized Pattern-
Matching Algorithms,” IBM J. Research and Development—Math.
and Computing, vol. 31, no. 2, pp. 249-260, 1987.

[34] Y. Kataoka, M. Ernst, W. Griswold, and D. Notkin, “Automated
Support for Program Refactoring Using Invariants,” Proc. IEEE
Int’l Conf. Software Maintenance, pp. 736-743, 2001.

[35] R. Kohavi, “A Study of Cross-Validation and Bootstrap for
Accuracy Estimation and Model Selection,” Proc. Int’l Joint Conf.
Artificial Intelligence, pp. 1137-1145, 1995.

[36] J. Krinke, “A Study of Consistent and Inconsistent Changes to
Code Clones,” Proc. Working Conf. Reverse Eng., pp. 170-178, 2007.

[37] O. Kupferman and R. Lampert, “On the Construction of Fine
Automata for Safety Properties,” Proc. Int’l Symp. Automated
Technology for Verification and Analysis, pp. 110-124, 2006.

[38] C. Le Goues and W. Weimer, “Specification Mining with Few
False Positives,” Proc. Int’l Conf. Tools and Algorithms for the
Construction and Analysis of Systems, pp. 292-306, 2009.

[39] S. Lerner, T. Millstein, E. Rice, and C. Chambers, “Automated
Soundness Proofs for Dataflow Analyses and Transformations via
Local Rules,” ACM SIGPLAN Notices, vol. 40, no. 1, pp. 364-377,
2005.

[40] V.B. Livshits and M.S. Lam, “Finding Security Errors in Java
Programs with Static Analysis,” Proc. USENIX Security Symp.,
pp. 271-286, Aug. 2005.

[41] D. Lo, L. Mariani, and M. Pezzè, “Automatic Steering of
Behavioral Model Inference,” Proc. Joint Meeting European Software
Eng. Conf. and ACM SIGSOFT Symp. Foundations of Software Eng.,
pp. 345-354, 2009.

[42] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic Generation of
Software Behavioral Models,” Proc. Int’l Conf. Software Eng.,
pp. 501-510, 2008.

[43] D. Malayeri and J. Aldrich, “Practical Exception Specifications,”
Proc. Advanced Topics in Exception Handling Techniques, pp. 200-220,
2006.

[44] T.J. McCabe, “A Complexity Measure,” IEEE Trans. Software Eng.,
vol. 2, no. 4, pp. 308-320, Dec. 1976.

[45] N. Nagappan and T. Ball, “Using Software Dependencies and
Churn Metrics to Predict Field Failures: An Empirical Case
Study,” Proc. Int’l Symp. Empirical Software Eng. and Measurement,
pp. 364-373, 2007.

[46] Nat’l Inst. of Standards and Technology, “The Economic Impacts
of Inadequate Infrastructure for Software Testing,” Technical
Report 02-3, May 2002.

[47] S.L. Pfleeger, Software Engineering: Theory and Practice. Prentice
Hall PTR, 2001.

[48] J.C. Sanchez, L. Williams, and E.M. Maximilien, “On the Sustained
Use of a Test-Driven Development Practice at IBM,” Proc. AGILE,
pp. 5-14, Aug. 2007.

[49] R.C. Seacord, D. Plakosh, and G.A. Lewis, Modernizing Legacy
Systems: Software Technologies, Engineering Processes, and Business
Practices. Addison-Wesley, 2003.

[50] M. Shepperd, “A Critique of Cyclomatic Complexity as a Software
Metric,” Software Eng. J., vol. 3, no. 2, pp. 30-36, 1988.

[51] S. Shoham, E. Yahav, S. Fink, and M. Pistoia, “Static Specification
Mining Using Automata-Based Abstractions,” Proc. Int’l Symp.
Software Testing and Analysis, pp. 174-184, 2007.

[52] R. Subramanyam and M.S. Krishnan, “Empirical Analysis of CK
Metrics for Object-Oriented Design Complexity: Implications for
Software Defects,” IEEE Trans. Software Eng., vol. 29, no. 4,
pp. 297-310, Apr. 2003.

[53] J. Sutherland, “Business Objects in Corporate Information
Systems,” ACM Computing Surveys, vol. 27, no. 2, pp. 274-276,
1995.

[54] M.-H. Tang, M.-H. Kao, and M.-H. Chen, “An Empirical Study on
Object-Oriented Metrics,” Proc. Int’l Symp. Software Metrics,
pp. 242-249, 1999.

[55] M. Vokac, “Defect Frequency and Design Patterns: An
Empirical Study of Industrial Code,” IEEE Trans. Software
Eng., vol. 30, no. 12, pp. 904-917, Dec. 2004.

LE GOUES AND WEIMER: MEASURING CODE QUALITY TO IMPROVE SPECIFICATION MINING 189

[56] W. Weimer, “Patches as Better Bug Reports,” Proc. Int’l Conf.
Generative Programming and Component Eng., pp. 181-190, 2006.

[57] W. Weimer and N. Mishra, “Privately Finding Specifications,”
IEEE Trans. Software Eng., vol. 34, no. 1, pp. 21-32, Jan./Feb. 2008.

[58] W. Weimer and G.C. Necula, “Finding and Preventing Run-Time
Error Handling Mistakes,” Proc. Ann. ACM SIGPLAN Conf.
Object-Oriented Programming, Systems, Languages, and Applications,
pp. 419-431, 2004.

[59] W. Weimer and G.C. Necula, “Mining Temporal Specifications for
Error Detection,” Proc. Int’l Conf. Tools and Algorithms for the
Construction and Analysis of Systems, pp. 461-476, 2005.

[60] J. Whaley, M.C. Martin, and M.S. Lam, “Automatic Extraction of
Object-Oriented Component Interfaces,” Proc. ACM SIGSOFT Int’l
Symp. Software Testing and Analysis, 2002.

[61] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta:
Mining Temporal API Rules from Imperfect Traces,” Proc. Int’l
Conf. Software Eng., pp. 282-291, 2006.

Claire Le Goues received the BA degree in
computer science from Harvard University and
the MS degree from the University of Virginia,
where she is currently a graduate student. Her
main research interests lie in combining static
and dynamic analyses to prevent, locate, and
repair errors in programs.

Westley Weimer received the BA degree in
computer science and mathematics from Cornell
University and the MS and PhD degrees from
the University of California, Berkeley. He is
currently an assistant professor at the University
of Virginia. His main research interests include
static and dynamic analyses to improve software
quality and fix defects.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

190 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

