
Large Language Models for Test-Free Fault Localization
Aidan Z.H. Yang
aidan@cmu.edu

Carnegie Mellon University
Pittsburgh, United States

Claire Le Goues
clegoues@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, United States

Ruben Martins
rubenm@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, United States

Vincent J. Hellendoorn
vhellendoorn@cmu.edu

Carnegie Mellon University
Pittsburgh, United States

ABSTRACT
Fault Localization (FL) aims to automatically localize buggy lines
of code, a key first step in many manual and automatic debugging
tasks. Previous FL techniques assume the provision of input tests,
and often require extensive program analysis, program instrumen-
tation, or data preprocessing. Prior work on deep learning for APR
struggles to learn from small datasets and produces limited results
on real-world programs. Inspired by the ability of large language
models (LLMs) of code to adapt to new tasks based on very few
examples, we investigate the applicability of LLMs to line level
fault localization. Specifically, we propose to overcome the left-to-
right nature of LLMs by fine-tuning a small set of bidirectional
adapter layers on top of the representations learned by LLMs to
produce LLMAO, the first language model based fault localization
approach that locates buggy lines of code without any test coverage
information. We fine-tune LLMs with 350 million, 6 billion, and 16
billion parameters on small, manually curated corpora of buggy
programs such as the Defects4J corpus. We observe that our tech-
nique achieves substantially more confidence in fault localization
when built on the larger models, with bug localization performance
scaling consistently with the LLM size. Our empirical evaluation
shows that LLMAO improves the Top-1 results over the state-of-
the-art machine learning fault localization (MLFL) baselines by
2.3%-54.4%, and Top-5 results by 14.4%-35.6%. LLMAO is also the
first FL technique trained using a language model architecture that
can detect security vulnerabilities down to the code line level.

CCS CONCEPTS
• Software and its engineering → Software functional prop-
erties; • Computing methodologies→ Neural networks.

ACM Reference Format:
Aidan Z.H. Yang, Claire Le Goues, Ruben Martins, and Vincent J. Hellen-
doorn. 2024. Large Language Models for Test-Free Fault Localization. In
2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE
’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3597503.3623342

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3623342

1 INTRODUCTION
Fault localization (FL) [1–4] approaches aim to automatically iden-
tify which program entities (like a line, statement, module, or file)
are implicated in a particular bug. The goal is to assist programmers
in fixing defects by pinpointing the places in the code base that
should be modified to fix them.

Broadly speaking, existing FL techniques combine or leverage
static and dynamic program analysis information to compute a
score corresponding to a program entity’s probability of contribut-
ing to a particular bug. Spectrum based fault localization (SBFL)
approaches, such as Tarantula [5] or Ochiai [6], apply statistical
analysis on the coverage data of failed/passed tests to compute the
suspiciousness of code elements. SBFL relies exclusively on test
coverage and is thus less applicable for data-driven defects; it is also
sensitive to properties of the underlying test suite like coverage
and numbers of passing and failing tests [1]. Mutation based fault
localization (MBFL) (like FIFL [7] or Metallaxis [8]) also analyzes
test case behavior to localize faults, but uses mutation analysis to
assess the concrete impact of particular code lines on test outcomes.
While effective, MBFL approaches are computationally intensive
and their performance is highly variable [9].

Recent advances in Machine learning based fault localization
(MLFL), like DeepFL [2], DEEPRL4FL [10], and GRACE [3]

use machine learning to relate code, test, or execution features
to the likelihood of faultiness for a program entity. MLFL tech-
niques learn to detect faulty lines of code from information in-
cluding suspiciousness scores from existing SBFL and MBFL tech-
niques (e.g., TRANSFERFL [11]), fault-proneness features like code
complexity metrics (e.g., DeepFL [2]), or the test coverage matrix
(DEEPRL4FL [10]), among others. These approaches speak to the
potential that increasingly powerful machine learning models have
for supporting debugging tasks.

Indeed, Deep learning (DL) has shown promise for many code
related tasks, such as program synthesis [12, 13]. The most effective
DL models for both natural language and code related tasks are
large language models (LLMs), such as Codex [14] and GPT-4 [15].
This class of models trains many billions of parameters with even
more tokens of training data, which tends to yield highly flexible
and powerful text generators. LLMs’ utility for code generation
and the fact that they are trained on an abundance of publicly-
available code [14] both suggest that existing large-scale LLMs
capture program source code in ways that can be leveraged for
specialized development tasks. A key property of LLMs is that

https://doi.org/10.1145/3597503.3623342
https://doi.org/10.1145/3597503.3623342

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Aidan Z.H. Yang, Claire Le Goues, Ruben Martins, and Vincent J. Hellendoorn

their performance improves consistently with the scale of their
computational budget [16], which is itself a function of the model
and training data size.

For instance, LLM performance on program synthesis bench-
marks increases linearly with the magnitude (log scale) of the num-
ber of parameters in the model [17]. This suggests that there is
substantial performance to be unlocked for software engineering
tasks by leveraging the largest publicly available language models.
However, most existing work in this space to date either trains
small models from scratch [2, 10, 18], or fine-tunes modest-sized
models [11], missing out on the scale of state-of-the-art LLMs.

This is in part because LLMs are not immediately suited off-the-
shelf for coding tasks that do not involve code generation, like
fault localization. State-of-the-art LLMs for code [13, 14, 19, 20] are
trained to generate code in a left-to-right manner, with each token
predicted from its preceding context. We posit that models trained
in this way are less suitable for token-level discriminative tasks,
like line-level fault localization, because the representation for any
given token is only conditioned on the context to the left.

In this paper, we present a promising alternative: we train light-
weight bidirectional adapters, themselves small models of the same
architecture as the base LLM, on top of left-to-right language mod-
els. These adapters add relatively few parameters and can be trained
effectively on small datasets of real bugs, such as Defects4J [21],
without updating the underlying LLM. We demonstrate that the
representations learned by pretrained left-to-right language models
already contain a wealth of knowledge about the suspiciousness of
lines of code, which increases strongly with the size of the LLM. We
can leverage this power through our adapters to find bugs while
requiring just a few hundred training samples for pretraining. Our
approach yields better fault localization performance than prior
work while requiring significantly less data preprocessing overhead.
Importantly, our approach does not use test cases at all, and there-
fore does not depend on test code quality for its performance. Our
approach does not need to run or analyze the test cases or examine
the program behavior on test cases to perform localization. Because
the approach is lightweight, it can effectively fine-tune existing
LLMs for particular languages (we show applicability to C, Java,
and Python), or particular defect classes (we show applicability to
functional defects and security vulnerabilities), with a relatively
small amount of training data.

In summary, we make the following contributions.

• LLMAO. We propose a technique that uses different config-
urations of language models to predict faulty lines across
three languages and two different application domains.

• Novel large language model based learning for FL. We
showed that with fine-tuning on top of off-the-shelf large
language models, we can achieve a higher fault detection
rate than previous MLFL techniques without the use of test
cases.

• DL based security vulnerability detection. LLMAO is the
first MLFL technique that can detect code line level vulnera-
bilities in the security domain.

• Empirical evaluation. We evaluated LLMAO against recent
state-of-the-art FL models to show its effectiveness in fault
localization.

1 public StrBuilder appendFixedWidthPadRight(Object, int, char) {

2 ...

3 if (width > 0) {

4 ensureCapacity(size + width); // SBFL=0.35

5 String str = (obj == null ? getNullText()

6 : obj.toString()); //SBFL=0.35

7 int strLen = str.length(); //SBFL=0.35

8 ...

9 public StrBuilder appendFixedWidthPadLeft(Object, int, char) {

10 // relevant code identical to the above

11 ...

12 public String getNullText(){

13 return nullText; // SBFL=0.71

14 }

(a) Code snippet implicated in Apache Commons Lang bug #47
from Defects4J . Both methods throw a NullPointerException when
getNullText() also returns null (line 7). The developer addressed
this by adding null checks after the assignment to str (not shown).
Select lines are annotated with Ochiai [6] suspiciousness score.

1 public void testLang412Right() {

2 StrBuilder sb = new StrBuilder();

3 sb.appendFixedWidthPadRight(null, 10, '*');

4 assertEquals("Failed to invoke appendFixedWidthPadRight",

5 "**********", sb.toString());

6 } //Test fails due to NullPointerException in appendFixedWidthPadRight()

7 public void testLang412Left() {

8 StrBuilder sb = new StrBuilder();

9 sb.appendFixedWidthPadLeft(null, 10, '*');

10 assertEquals("Failed to invoke appendFixedWidthPadLeft",

11 "**********", sb.toString());

12 } //Test fails due to NullPointerException in appendFixedWidthPadLeft()

(b) Lang’s bug #47 and corresponding failed tests

Figure 1: Apache Commons Lang Bug #47, from Defects4J

• Artifact availability. Our data, tool, and model checkpoints
are available.1

2 MOTIVATION
In this section, we discuss in detail two real-world bugs that test-
based FL techniques struggle to clearly localize. We use these ex-
amples to motivate why we propose a novel language model based
fault localization technique that shifts the dependence on tests to
an LLM’s latent understanding of source code.

2.1 General Logic Defects
Consider Figure 1a, which shows snippets of code from twomethods
in the Apache Commons Lang project. Lang-47 (i.e., bug #47 of the
Lang project) from the Defects4J (V1.2.0) [21] dataset highlights
a null pointer exception that can be triggered in both of these
methods, for the same reason. The issue was addressed by adding
the null pointer check and initialization shown starting on line 7 in
appendFixedWidthPadRight; the identical code and block added
in appendFixedWidthPadLeft is elided for brevity.

1https://github.com/squaresLab/LLMAO

https://github.com/squaresLab/LLMAO

Large Language Models for Test-Free Fault Localization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Given tests, we can use the Ochiai SBFL formula [6] to calculate
code line suspiciousness scores to help pinpoint this bug. SBFL tech-
niques in general compute suspiciousness by applying a formula to
each entity (line, in this case) in the codebase based on test coverage
information for passing and failing tests. Specifically, Ochiai counts
for each code line (ℓ) the number of failed tests covering ℓ (ℓ𝑓) or
not covering ℓ (𝑛𝑓), and the number of passed tests covering ℓ (ℓ𝑝)
or not covering ℓ (𝑛𝑝). The suspiciousness score of a code line (ℓ)
is then 𝑂𝑐ℎ𝑖𝑎𝑖 (ℓ) = ℓ𝑓 (ℓ𝑓 + ℓ𝑝) (−

1
2) (ℓ𝑓 + 𝑛𝑓) (−

1
2) .

Several tests in the Apache Commons Lang test suite execute this
code. The two that throw null pointer exceptions, demonstrating
the bug, are shown in Figure 1b. Five others (not shown) execute
these two methods as well, but are passing.

Figure 1a shows Ochiai scores computed using these tests. The
scores demonstrate a common limitation of SBFL, which is that it
cannot disambiguate between lines in a single straight-line block,
as shown in appendFixedWidthPadRight. testLang412Right()
executes lines 1–7, corresponding to the then block of the check
on line 3. This computation is also misled by the small number of
triggering tests: both failing tests cover getNullText, while only
two of the five passing tests do. Line 13 in Figure 1a has a much
higher score than the code in the two methods that call it.2

MLFL techniques like DeepFL [2] use other features on top of
SBFL suspiciousness scores for training data, like textual similarity
information, to guide theirmodel to detect faultymethods. However,
DeepFL only has confidence in method-level fault localization, with
limited results at the statement level.

Our technique can detect line 7 from Figure 1a as highly suspi-
cious. It assigned a score of 0.33 on line 7, and ranks it the fourth
most suspicious line in the code file. Our technique also assigned a
score of 0.27 on line 1, and ranks it the seventh most suspicious line
in the code file. In contrast, our technique only assigned a score of
0.09 for line 13, which is not within the top 20. Language models are
good at detecting these types of defects because they recognize un-
likely inputs [22]. Consider just the text of the code, line 5 appears
to assign a null-like value (the result of getNullText()) to src
under some conditions. Line 7 then invokes a method on src. Even
without knowing the implementation of getNullText() in depth
(for which traditional program analyzers would be more suitable
than language models), this pattern is suspicious to a human reader
and a large language model alike.

2.2 Vulnerability Detection
Logical errors are not the only type of code mistakes that can
impact software quality. Software security vulnerabilities are often
the target of various forms of cyber-attacks.

The Devign dataset [23] labels vulnerable functions from four
open-source C-language repositories (requiring 600 man hours
of manual labeling). Figure 2 shows a bug from the Qemu open-
source project,3 one of the four studied repositories in Devign. The
bug lines (highlighted) correspond to CWE-362, within the top
25 most dangerous Common Weakness Enumeration (CWE) list.4

2Note that the test suite includes another test, testGetSetNullText, which explicitly
checks that getNullText returns null (not the empty string).
3https://qemu.org/
4https://cwe.mitre.org//top25/archive/2022/2022_cwe_top25.html

1 DISAS_INSN(divw)

2 {

3 TCGv reg;

4 TCGv tmp;

5 TCGv src;

6 int sign;

7 sign = (insn & 0x100) != 0;

8 reg = DREG(insn, 9);

9 if (sign) {

10 tcg_gen_ext16s_i32(QREG_DIV1, reg);

11 } else {

12 tcg_gen_ext16u_i32(QREG_DIV1, reg);

13 }

14 SRC_EA(env, src, OS_WORD, sign, NULL);

15 tcg_gen_mov_i32(QREG_DIV2, src);

16 if (sign) {

17 gen_helper_divs(cpu_env, tcg_const_i32(1));

18 } else {

19 gen_helper_divu(cpu_env, tcg_const_i32(1));

20 }

21 tmp = tcg_temp_new();

22 src = tcg_temp_new();

23 tcg_gen_ext16u_i32(tmp, QREG_DIV1);

24 tcg_gen_shli_i32(src, QREG_DIV2, 16);

25 tcg_gen_or_i32(reg, tmp, src);

26 set_cc_op(s, CC_OP_FLAGS);

27 }

Figure 2: Qemu’s CWE-362 (Race condition vulnerability)

CWE describes CWE-362 as concurrent execution using shared
resource with improper synchronization (i.e., race condition). Al-
though Qemu’s repository5 includes test cases for crashes and input
behaviors, none of the test cases covers concurrency bugs that only
occur during run time. Indeed, concurrency bugs like race condi-
tions are ill-suited for discovery via traditional testing.

As a result, test based fault localization and debugging methods
are clearly inapplicable to this kind of defect. This has of course
motivated significant work in profiling and analysis to discover and
address them [23, 24]. Chakraborty et al. [24] found that existing
modeling techniques do not completely capture code semantics in
vulnerability detection. Existing deep learning based vulnerability
detection tools only go as far as predicting any vulnerability in
a code snippet or program file, rather than individual statements.
Traditional approaches such as static analysis can be used to detect
race conditions [25?]. However, these approaches are either precise
but not scalable or can scale for large programs but incur a high
false positive rate, limiting their usage in practice.

Fortunately, a dataset like Devign encompasses significant man-
ual effort in labeling existing security vulnerabilities in existing
code, as has been done for lines 10, 12, and 23–25 in Figure 2.

We show in this paper that an FL-specific model pretrained on
a large-scale LLM can also detect security vulnerabilities without
test cases.

Our technique detects lines 3, 4, 10, 12, and 23 as faulty in Figure
2, in which lines 10, 12, and 23-25 are actual vulnerability lines. Our
technique successfully localizes three of the five lines that are faulty.
5https://github.com/qemu/qemu

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Aidan Z.H. Yang, Claire Le Goues, Ruben Martins, and Vincent J. Hellendoorn

Surprisingly, lines 3 and 4 are variable declarations (i.e., variables
reg and tmp) for the actual faulty lines 10–12, and 23–25.

3 APPROACH
In this section, we discuss the key ideas behind our language model
enabled fault localization technique. Figure 3 shows an overview of
LLMAO’s training setup. The input to LLMAO is a buggy program;
its output is a list of suspiciousness scores corresponding to each
code line’s probability of being buggy – values close to 1 indicate
that lines are likely defective. As shown in Figure 3, we first tokenize
the input and then provide it to a pretrained left-to-right LLM. From
this LLM, we obtain one (high-dimensional) vector representation
per line, which we provide to a small bidirectional model that
predicts bugginess probabilities for each line. We only train the
final stage of this model; the LLM remains frozen and can be easily
replaced with other powerful open-source models. Figure 5 shows
a more detailed description of our language modeling procedure,
which we describe in detail in Section 3.2. In the following sections,
we describe each component of LLMAO.

3.1 Left-to-right Language Models
Neural Language Models typically produce text in a left-to-right
manner, producing each word given its prefix context. This both
enables efficient training, as any document can be turned into a
collection of as many training samples as there are tokens, and en-
ables them to generate new text once trained. Virtually all modern
language models are attention-based models that use the Trans-
former architecture [26]. In these models, each token exchanges
information with all other tokens via a learned attention proce-
dure. To efficiently train left-to-right Transformer models on an
entire document in which each token is generated only from its
prefix context thus involves “masking out” part of the attention
matrix to prevent each token from attending to its suffix context
(essentially, the future). Figure 5 (top) shows the causal attention
mechanism used to train a left-to-right language model. Figure 5
describes a simplified Transformer model for both CodeGen and
our bidirectional language model. Auto-regressive and left-to-right
LMs [13, 14, 19, 20] use all previous tokens (i.e., tokens to the left)
to predict the probability of the next token (i.e., tokens to the right).
Left-to-right models are useful for program generation tasks, as
shown in Figure 4. Specifically, the lower triangular part of the
attention matrix remains unmasked (visualized as blue) while atten-
tion in the remaining part is masked out (white). This configuration
allows each token to attend to itself and all past tokens, but prevents
it from attending to future tokens.

Our approach is compatible with any left-to-right language
model, but is most effective when the underlying model is large
and has been pretrained on a large volume of code data. At present,
the CodeGen family of models [13] is most suitable for this role.
These are a series of increasingly large left-to-right languagemodels
trained for program synthesis in three stages:

(1) Each model is first trained on the natural language dataset
ThePile, an 825.18 GiB mostly English language text corpus
collected by Gao et al. [27] for language modeling. 7.6% of
the dataset is programming language data collected from
GitHub repositories with >100 stars.

(2) The models are then further trained on data from the Google
BigQuery GHArchive dataset, which consists of open-source
code across multiple programming languages – C, C++, Go,
Java, JavaScript, and Python.

(3) Finally, the models are tuned on the BIGPYTHON dataset,
which contains a large amount of Python data.

Checkpoints after each stage are released for every model size,
ranging from 350M to 16B parameters. The 16B model outperforms
the original Codex model [14] on a Python program synthesis task.

While language models are typically used to predict the next
token, they can also return the “hidden” states from their final
Transformer layer. When generating text, these states are converted
to a next-token prediction via a simple linear transformation. As
such, these states tend to represent themodel’s knowledge about the
evolving context at each point in the file, making them intrinsically
useful. As shown in Figure 5, we extract the final hidden states for
each newline (NL) token in each training sample from CodeGen
to produce a condensed sequence representation in which each
token represents one line. We pair these with their corresponding
location (i.e., line #5 of a 50 line file) and save these to disk.

To train our model, we load these encoded lines in batches, where
we retrieve samples of up to 128 contiguous newline states at a time.
We choose this number because the CodeGen model can consume
a maximum of 2,048 tokens as its input size; inputs with 128 lines
almost always fit this token budget. Samples with fewer lines are
padded, along with the label vector, to obtain a uniform length.
Padding entries are ignored in the loss computation. When files
contain more than 128 lines, we sample a series of 128 line windows
that cover each faulty line in the file. Specifically, we repeatedly
create a sample with up to 128 lines starting from a random offset
before the immediate next faulty lines that is not yet covered by a
previous segment. We then mark all faulty lines in this segment as
covered and repeat until all lines are covered by at least one segment.
We choose random starting offsets to ensure that the faulty lines
within the split code lines are not consistently at the same indices
(e.g., right at the start or in the middle), which would cause our
model to memorize certain index locations as faulty lines. This
enables our technique to handle inputs longer than 2048 tokens.

3.2 Bidirectional Adapter
While left-to-right language models extract rich representations per
token, they are ill-suited for fault prediction because the represen-
tation of each given token only reflects knowledge of its left-ward
context. One solution might predict buggy lines based on the final
hidden state, reflecting the model’s knowledge after the entire file
has been processed, but this creates a bottleneck where that state
must store information from each line in the entire file. This bottle-
necking phenomenon [28] is precisely why the NLP field moved
away from Recurrent Neural Networks, which represent sequences
with a single hidden state, and towards attention-based models,
which preserve and use the state of each token [26].

We postulate that we can leverage these rich learned represen-
tations at each token by training just a few more Transformer
layers that allow the model to exchange information between rep-
resentations of later and earlier lines, thereby generating a new,
bidirectionally aware representation for each line of code. We can

Large Language Models for Test-Free Fault Localization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

GPT-2
Tokenization

Left-to-Right
Large Language

Model

[0,0,1,…,1,1]

Fixing
Commit SHA

Attention Mask

Bidirectional
Adapter …

Predicted
Faulty Lines

Line #57

Commit Diff

Buggy Program

Fault
Localized

Buggy
Program

Code Tokens

[4285, … , 198, 24443]

[198]

Newline
Tokens

Newline Final
Hidden States

Pretrained
Checkpoint

CodeGen-Multi-16B
…

Binary Cross-Entropy Loss

da500aa4f

Figure 3: LLMAO ’s architecture, which takes as input a buggy program and produces a list of suspiciousness scores for each code line

1 # Recursive binary search

2 def binarySearch(list, left, right, i):

3 middle = ???

(a) Left-to-right language model prompt

1 # Recursive binary search

2 def binarySearch(list, left, right, i):

3 middle = (left + right) // 2

4 if arr[middle] == x:

5 return middle

(b) Left to right language model completion

Figure 4: Left-to-right language model code generation

do so by removing the causal attention mask that normally prevents
the exchange of information with “future” tokens in our added lay-
ers. In our case, we assume that the entire file has already been
written, so this constraint is unnecessary. This yields a bidirectional
encoder. As shown in Figure 5, the attention masking matrix for the
bidirectional model allows all tokens in the sequence to attend to
each other (visualized in blue). We thus train a bidirectional adapter
consisting of a configurable number of Transformer layers, follow-
ing the standard Transformer encoder architecture [26]. Concretely,
our approach involves five steps, visualized in Figure 5:

Step 1:We start with a series of code tokens𝐶 = [𝑐0, 𝑐1, . . . , 𝑐𝑁].
We query a causally pretrained Transformer T𝑃𝑇 to transform these
into a representational “states” 𝑆 ∈ R𝑁×𝐷 , where 𝐷 represents the
pretrained model’s dimensionality. This step takes place “offline”,
as we do not tune the pretrained model.

Step 2: We extract the representations of each newline token to
obtain state per line in the original program: 𝑆𝑁𝐿 ∈ R𝑀×𝐷 = 𝑆 [𝑐𝑖 =
\n], where𝑀 is the number of original newlines and typically𝑀 ≪
𝑁 . We conjecture that these tokens’ states reasonably accurately
capture the information of their line in the file’s prefix context.

Step 3: The dimension of the pretrained model’s states,𝐷 , ranges
up to 6,144 for the CodeGen models we built on. We use a signif-
icantly smaller dimension 𝑑 ≪ 𝐷 for our adapter layers, because
they are trained on limited data. We first reduce the dimension of
𝑆𝑁𝐿 to 𝑅𝑁𝐿 ∈ R𝑀×𝑑 = 𝑆𝑁𝐿 𝑊𝑑 where𝑊𝑑 ∈ R𝐷×𝑑 is a learnable
weight, equivalent to a fully connected layer. We experiment with
dimensions 𝑑 ∈ {256, 512, 1024}

Step 4:We then train an𝑛-layer bidirectional Transformer adapter
T𝐴 with the same internal dimension 𝑑 . This gives us the final rep-
resentation of each newline token 𝐴𝑁𝐿 ∈ R𝑀×𝑑 , which aims to
capture their role in the bidirectional context. We set the number
of Transformer layers to 𝑛 = 2.

Step 5: We transform each newline token’s representation to
a single value ranging from 0 to 1 via a sigmoid-activated dense
projection 𝐵 = 𝜎 (𝑅𝑁𝐿 𝑊𝑏) where𝑊𝑏 ∈ R𝑑×1. The resulting pre-
dictions per newline token can be seen as probability estimates
of each line being buggy according to the model. These are com-
pared against the ground-truth labels 𝑇 ∈ {0, 1}𝑀 using the binary
cross-entropy loss L𝐶𝐸 = 𝑇 ln𝐵 + (1 − 𝑇) ln (1 − 𝐵). This loss is
backpropagated through all layers up to, but not including, those in
the pretrained network to obtain gradients. Given these gradients
averaged across a sufficiently large minibatch of samples, the model
states are updated to make its predictions more likely to agree with
the training labels, using the setup described in Section 4.1.6.

4 EVALUATION
In this section, we present our approach and results for the follow-
ing three research questions.
RQ1. How does LLMAO compare with prior FL techniques?
We evaluate our technique’s performance in comparison with ex-
isting FL techniques on the same dataset.
RQ2. How well does LLMAO’s performance generalize to
new projects? We evaluate LLMAO’s performance on previously-
unseen code, to assess its generalizability beyond its training data.
RQ3. How does each component of LLMAO impact its perfor-
mance? We conduct an ablation analysis to evaluate the impact of
different components on the performance of our model.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Aidan Z.H. Yang, Claire Le Goues, Ruben Martins, and Vincent J. Hellendoorn

Causal Attention

Predict Bug
Probability

y = 0
i f (x > = 0) :
y = 1 / x ;

r e t u r n y

Dimension
Reduction

\n
\n

\n
\n

Left-to-right Large
Language Model

Bidirectional
Adapter Model

y = 0

i f (x > = 0) :
y = 1 / x ;

r e t u r n y

Bidirectional Attention

Pretrained Model

LMFL

Figure 5: Attention masking procedure of LLMAO

RQ4. How generalizable is LLMAO to other languages and do-
mains? We evaluate LLMAO on different languages and domains.

4.1 Setup
4.1.1 Dataset. Our work investigates the effectiveness of LLMs in
the setting of fault detection. To determine how well our proposed
technique can perform on real world faults, we select four datasets
with source code and corresponding labeled fault lines.

• Defects4J V1.2.0 : A Java benchmark dataset with 395 bugs
from 6 Java projects [21]. We use V1.2.0 for most of our
benchmarks instead of the latest version (V2.0.0) to compare
on the same dataset as most prior FL techniques.

• Defects4J V2.0.0: A Java benchmark dataset with additional
bugs over Defects4J V1.2.0 [21]. To show that our approach
can generalize to faults from unseen projects, we further
evaluate our tool as trained on Defects4J V1.2.0 on 226 new
bugs from the newest Defects4J version (from projects total-
ing 165k more lines of code). We exclude the first 45 bugs in

Jsoup and all in Gson/Jacksoncore because of trouble repro-
ducing them (as seen in prior work [3]).

• BugsInPy: a Python benchmark with 493 bugs from 17 dif-
ferent projects [29].

• Devign: a C benchmark with 5,260 from two open-source
projects [23]. The original Devign dataset contains 15,512 se-
curity vulnerabilities from four different projects [23]. How-
ever, the authors of Devign only released a partial dataset
available online.

All datasets include fixing commits that correspond to each fault.We
identify faulty statements as those that are changed in the git diff as-
sociated with each commit, following prior approaches [11, 22, 30].
We then track line numbers of changed statements as training labels.

4.1.2 Baselines. LLMAO takes as input source code, and outputs a
ranked list of probabilities corresponding to how likely a code line
is buggy. To the best of our knowledge, no existing FL approaches
take as input only the source code as natural language. However,
we compare against existing FL approaches that take as input both
source code and test code to observe if an LLM-enabled FL technique
can produce comparable results without the dependence on tests
or test coverage information.

Our baselines are recent, state-of-the-art statement-level MLFL
approaches: DeepFL [2], DeepRL4FL [10], and TRANSFER-FL [11].
DeepFL, and DeepRL4FL are MLFL techniques that take the test
coverage information as model input. TRANSFER-FL builds on pre-
vious test-based MLFL approaches with pretrained information
from open-source Java programs. We also include Ochiai [6], the
best-performing SBFL approach. We use the prior techniques’ repli-
cation packages to compute Top-N scores, including their handling
of tied ranks (if any); we follow DeepFL’s approach for accounting
for tied ranks for Ochiai.

Our tool produces a fault probability score for each line of a code
file (i.e., statement level fault localization). Previous approaches
output a ranked list of either suspicious statements or suspicious
methods. In particular, DeepFL [2] is trained at the method level,
i.e., predicting which methods are defective.

To compare, we follow other prior work and use DeepFL’s spec-
trum and mutation-based features that are applicable to detect-
ing faulty statements. DeepRL4FL, and TRANSFER-FL perform
statement-level fault localization by default, similar to LLMAO.
Since the repository and processed dataset for DeepRL4FL are not
publicly available, we directly cite the experimental results reported
in their paper [10]. For each of the other compared techniques, we
run their tool for a total time of 30 minutes, which is comparable
to our tool’s training time for 300 epochs.

4.1.3 Validation. For each of our three datasets, we perform a 10-
fold cross validation on the entire dataset. Specifically, we shuffle
the dataset and train 10 models with 90% of the training set each,
holding out the remaining 10% for validation, so that each sample
in the dataset is held out exactly once. This is by contrast with some
prior evaluations that in their default settings, validate tools within
individual projects (using one bug in a given Defects4J project for
validation and training on other bugs in that same project) [2, 3,
10, 11]. An effective and robust FL tool using machine learning or

Large Language Models for Test-Free Fault Localization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Hyperparameters used for model training, both for the
model trained from scratch and the three models trained on top of
the various CodeGen models

Hyperparameter From Scratch 350M 6B 16B

Max learning rate 5e-6 1e-4 7e-6 4e-6
Min learning rate 1e-8 1e-7 1e-7 1e-7
Model dimension 256 1024 4096 6144
Layers 8 2 2 2
Batch size 64 32 32 32
Epochs 2000 300 300 300

language models should be able to predict faulty locations while
trained on code from different projects.

Training FL models on a particular project may produce over-
fitting to a particular project and reduces applicability, requiring a
relatively rich project and bug history before a technique can be
used. We therefore believe that our 10-fold validation approach is
more generalizable for training models on larger code datasets. As
is done in some prior evaluations [2, 10], we also separately evaluate
the degree to which our model trained on one set of projects gener-
alizes to a set of projects not seen in training (without retraining
for those new projects).

We also deploy an early-stopping mechanism for each of our
training runs. We checkpoint and record the epoch with the single
highest average precision and recall score on the held-out valida-
tion dataset after every epoch. Once these scores stop improving for
sufficiently many epochs (i.e., around 300 for all our model config-
urations), we stop training and use the best-performing checkpoint
to calculate the Top-N metrics against the ground-truth labels.

4.1.4 Evaluation Metrics. We use the following evaluation metrics:
Top-N. Top-N measures the number of faults with at least one

faulty element located within the first N positions (N=1, 3, 5). De-
velopers only examine a small amount of the most-likely buggy
elements within a ranked list [31], with particular attention paid
to the top-5 elements [32]. To compare against state-of-the-art
techniques, we adopt Top-N following prior work [2–4].

AUC of the model’s ROC Curve. Although most developers in-
spect only top-5 elements in a given list, we also aim tomeasure how
overall prediction compares against the ground truth. A Receiver
Operating Characteristic (ROC) curve shows the performance of
one classification model at all thresholds. It can be used to evaluate
the overall model strength for making precise and accurate predic-
tions. The area under an ROC curve (AUC) measures the usefulness
of a test. AUC is a number between 0 and 1; higher is better. We
measure the AUC at each of our model’s top performing points in
time, averaging precision and recall. We choose AUC to observe
the prediction strength of our models at their peak performance.

4.1.5 Ablations. We conduct an ablation analysis to evaluate the
impact of different components on the performance of our model
(RQ3). We run five variants of our proposed technique for the De-
fects4J V1.2.0 dataset. We first evaluate LLMAO pretrained on Code-
Gen, and LLMAO without any pretraining to evaluate the impact
of the pretrained large language model’s final hidden states. For

the pretrained models, we checkpoint with three different CodeGen
sizes (i.e., 350 million, 6 billion, and 16 billion parameters) to eval-
uate the impact of the pretrained model’s size on finetuning. We
also train a version of our model without bidirectional layers, using
only the CodeGen auto-regressive attention mechanisms for fault
localization. We aim to determine if left-to-right LLMs can detect
faults directly, without any customization for code understanding.

4.1.6 Hyperparameters. Table 1 shows the hyperparameters used
in training all our models. We reduced the learning rates until both
the training and validation loss converged in a stable manner. Fol-
lowing the established practice in language model training [33], we
use a learning rate warm-up of 1000 steps and a cosine learning rate
decay until a global minimum learning rate of 1e-7 across 20k steps.
Each model is trained on a single GPU. For the CodeGen pretrained
models, we use a uniform batch size of 32 and perform gradient
accumulation to ensure every batch of our data fits on a single GPU.
For a fair comparison of LLMAO’s components (RQ3), we use the
same number of training epochs (300) for all pretrain sizes and
projected dimensions. However, the non-pretrained bidirectional
model requires a much longer training time (some 2,000 epochs)
for the validation loss to converge.

We train all configurations of our model on a uniform dimension
of 512, which is projected down from the various CodeGen models’
hidden state dimensions (i.e., 1024, 4096, and 6144). We use a 8
attention heads for all our models.

4.1.7 Environment. All results presented in this section were ob-
tained using an Intel(R) Xeon(R) 6248R CPU @ 3.00GHz running
Debian GNU/Linux 1 and a single Nvidia Quadro RTX 8000 GPU.
Our largest model, LLMAO with CodeGen-16B, takes 20 minutes to
train on the BugsInPy dataset, 30 minutes on the Defects4J dataset,
and 2 hours on the Devign dataset.

4.2 Results
RQ1: How does LLMAO compare with prior DL-based FL
tools? Table 2 (top) details experimental results showing how our
tool compares against state-of-the-art FL techniques. The first 4
techniques are from prior approaches; we evaluate our LLMAO
using three CodeGen pretrain sizes. The results show the Top-N (N
∈ {1, 3, 5}) score for each technique. Table 2 shows that LLMAO
with the largest (16B) pretrained CodeGen size outperforms all
the compared techniques. Even with smaller pretrain sizes (350M
and 6B), LLMAO performs similarly to the top-performing prior
methods.

Per Table 2, LLMAO with 16B CodeGen pretrain size detects
84 more faults within Top-5 than the top-performing SBFL tech-
nique, Ochiai (84.8% improvement). LLMAO detects 48 more faults
within the Top-5 than the first proposed deep learning based FL
technique DeepFL (35.6% improvement), and 23 more faults within
the Top-5 than the latest state-of-the-art test-based MLFL approach
TRANSFER-FL (14.4% improvement). For the Top-3 and Top-1 met-
ric, LLMAO pretrained on the 16B CodeGen model can detect 14
more faults (10.4% improvement) and 2 more faults (2.3% improve-
ment) than the state-of-the-art tool TRANSFER-FL. We observe that
our LMFL technique improves particularly over prior FL techniques
when more suspicious lines are inspected (i.e., higher Top-5 scores).

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Aidan Z.H. Yang, Claire Le Goues, Ruben Martins, and Vincent J. Hellendoorn

Table 2: LLMAO performance on 395 bugs from Defects4J V1.2.0, compared to prior techniques (top); on 226 additional bugs from Defects4J
V2.0.0 (middle); and with ablation (bottom, again on defects from Defects4J V1.2.0)

FL type Technique Top-1 Top-3 Top-5

SBFL Ochiai 19 (4.8%) 65 (16.5%) 99 (25.1%)

MLFL

DeepFL 57 (14.4%) 95 (24.1%) 135 (34.2%)
DeepRL4FL 71 (18.0%) 128 (32.4%) 142 (35.9%)
TRANSFER-FL 86 (21.8%) 135 (34.2%) 160 (40.5%)

LMFL LLMAO with CodeGen-350M 82 (20.8%) 106 (26.8%) 126 (31.9%)
LLMAO with CodeGen-6B 85 (21.5%) 115 (29.1%) 160 (40.5%)
LLMAO with CodeGen-16B 88 (22.3%) 149 (37.7%) 183 (46.3%)

LMFL, new projects LLMAO with CodeGen-16B 72 (31.9%) 93 (41.2%) 123(54.4%)

LMFL Ablation −𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
(6 layers, trained from scratch)

5 (1.3%) 24 (6.2%) 30 (7.6%)

−𝑏𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑑𝑎𝑝𝑡𝑒𝑟
(predict directly from CodeGen-16B)

10 (2.6%) 60 (15.2%) 85 (21.5%)

A Wilcoxon signed-rank test [34] indicates that the top-N val-
ues the difference between LLMAO with CodeGen-16B and prior
techniques in terms of performance at the several top-N values is
statistically significant (p-values ranging from 0.01 to 0.03).

When considering Top-1 scores, our approach is only slightly
better than TRANSFER-FL, which performs roughly on-par with
our CodeGen-6B model. However, note that prior techniques only
achieve comparable results with our tool by requiring readily-
available tests and test coverage as input. Writing tests and pro-
ducing test coverage are time-consuming activities, and tests are
not always available or useful when debugging. Furthermore, both
DeepFL and TRANSFER-FL techniques include mutation-based
fault localization information, which is very time-consuming to
collect (i.e., hours of online collection time per bug [2]).

RQ1 Summary
LLMAO pretrained on the largest CodeGen size improves on the
state-of-the-art by 14.4% on Top-5, without relying on test cases,
program analysis, or even compilable code.

RQ2. Howwell does LLMAO ’s performance generalize to new
projects?We additionally evaluate LLMAO on bugs from the newer
Defects4J V2.0.0, on projects that were not seen in pretraining (an
additional 165K lines of code). The “LMFL, new projects” row in
Table 2 shows that LLMAO with 16B CodeGen pretrain size detects
72/226 faults in top 1, 93/226 faults in top 3, and 123/226 faults in
top 5.

Although we avoid strong statistical claims in this case study
setting, these results are comparable to LLMAO’s performance on
projects included in its training data, suggesting that it generalizes
well. Several previously-published techniques are also evaluated for
cross-project generalizability, in a variety of experimental settings.
DeepFL and DeepRL4FL repeatedly train a model on N-1 projects
and test it on a held-out project; in both cases, performance on
the cross-project setting degrades compared to the within-project
setting. GRACE [3] localizes to the method level (rather than the

Table 3: LLMAO’s Top-N Effectiveness on Different Datasets

Metric BugsInPy Defects4J Devign

lines 76,672 168,960 7,180,160
Top-1 51/493 (10.3%) 88/395 (22.3%) 1478/5260 (28.1%)
Top-3 59/493 (12.0%) 149/395 (37.7%) 2050/5260 (39.0%)
Top-5 75/493 (15.2%) 183/395 (46.3%) 3171/5260 (60.3%)

statement level); its cross-project evaluation also looks at defects
from Defects4J V2.0.0. GRACE’s performance also degrades slightly
on new defects, though less than prior work. A key advantage of our
approach is that LLMAO generalizes well to unseen projectswithout
retraining of any kind. This argues for our technique’s practicality
both in terms of performance and time/compute requirements.

RQ2 Summary
LLMAO pretrained on the largest CodeGen size using data from
Defects4J V1.2.0 performs well on bugs in unseen projects (not
included in the training data), without additional training costs.

RQ3. How does each component of LLMAO impact its per-
formance? The bottom two rows of Table 2 show the impact of
pretrained models on LLMAO’s performance.

Without PretrainingWe trained our bidirectional language model
from scratch, using the same tokenizer as CodeGen for tokeniz-
ing the inputs. We replace CodeGen’s token-level representation
with a learnable embedding for each token. We then pass these
embeddings through 6 bidirectional Transformer layers (a typical
minimum for Transformers) and predict the bugginess probabil-
ity for states corresponding to newline tokens only (other tokens
are embedded alongside these but ignored in the final layer). This
model, trained on a sample size of 395 (i.e., total number of labeled
Defects4J bugs) can achieve only a Top-1 of 5 (1.3%), Top-3 of 24
(6.2%), and Top-5 of 30 (7.6%). LLMAO without any pretraining

Large Language Models for Test-Free Fault Localization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

performs significantly worse than LLMAO based on any size of
CodeGen.

Without the Bidirectional Adapter We train a single linear projec-
tion from CodeGen-16B’s final hidden states to a bugginess score for
each line, thus omitting the bidirectional attention adapter layers.
This approach performs better than LLMAO trained from scratch,
with a Top-1 of 10 (2.6%), Top-3 of 60 (15.2%), and Top-5 of 85
(21.5%). This highlights how much program understanding a left-to-
right LLM trained on a large corpus of code encodes in its learned
representations. Although left-to-right models are not targeted at
text-understanding, an LLM that can generate code given a natu-
ral language prompt can evidently learn to understand faults to a
similar level of top performing SBFL approaches. Given enough
fine-tune training on top of the previous task of code generation,
CodeGen-16B without any further configuration is able to detect
85 Defects4J bugs (21.5%), which is only 14% worse than the top
performing SBFL model Ochiai. However, using CodeGen-16B for
fault localization directly still performs significantly lower than all
LLMAO models with bidirectional adapter layers. We perform an
additional Wilcoxon signed-rank test [34] to observe that the top-N
values of LLMAO with CodeGen-16B yields significantly better re-
sults than LLMAOwithout pretraining andwithout the bidirectional
adapter at 𝛼 = 0.05 (p-values of 0.008 and 0.02).

Underlying LLMs Comparing our tool on different pretrained
CodeGen sizes, we see an improvement in fault detection as the
underlying model grows. LLMAO pretrained on CodeGen-350M
improves upon LLMAO without the bidirectional adapter layers by
72 on Top-1. LLMAO pretrained on CodeGen-6B can detect 3 more
faults on Top-1 than CodeGen-350M, and LLMAO pretrained on
CodeGen-16B can find an additional 3 compared to CodeGen-6B. At
higher Top-N targets, the performance improves more steeply with
the size of the underlying model. For instance, LLMAO fine-tuned
on CodeGen-350M detects 96 more faults than without pretraining,
while fine-tuning on top of CodeGen-16B uncovers another 153.

RQ3 Summary
Although left-to-right language models can directly localize some
faults, adding the bidirectional adapter layers is crucial for achiev-
ing state-of-the-art fault localization. Furthermore, we show that
our tool using the largest pretrained LLM (i.e., CodeGen 16B)
significantly outperforms all other variations of our model.

RQ4. How generalizable is LLMAO to other languages and
domains? To evaluate our proposed technique on different lan-
guages and domains, we run all three pretrain sizes of our tool
on the BugsInPy [29] dataset for localizing Python bugs, and the
Devign [23] dataset for localizing C security vulnerabilities. We
believe that measuring our tool on two other languages and one
other defect domain can evaluate the effectiveness of modeling
code defects as specific behaviors in natural language.

We observe from Table 3 that LLMAO can localize faulty state-
ments with Top-1 of 10.3% on BugsInPy, and 28.1% for Devign. We
observe that the performance of LLMAO improves as the size of
the training dataset increases. Although Defects4J has fewer bugs
than BugsInPy, we find that in total, Defects4J has 53% more code
lines combined from all code files than the BugsInPy dataset. Since

our approach considers source code as natural language, a larger
database of code lines gives our models more training data. In par-
ticular, our largest dataset Devign with over 7 million lines of code
achieves a Top-5 of 60.3% (i.e., 60.3% of our model’s top-5 suspicious
lines have at least one line that is an actual vulnerability).

Figures 6a, 6b and 6c show the ROC curve for each of our trained
models compared to the completely random curve (i.e., AUC=0.5).

A ROC curve shows the performance of our model at all clas-
sification thresholds. The completely random curve has the true
positive rate equal to the false positive rate at every classification
threshold. We plot the ROC for our model trained on Defects4J ,
BugsInPy, and Devign after 300 epochs without any pretraining (i.e.,
the Transformer ROC curve), CodeGen-350M pretraining, CodeGen-
6B pretraining, and finally CodeGen-16B pretraining.

We observe a clear improvement on the AUC as we use the
CodeGen final hidden states for training, and the AUC continues to
improve as we use larger CodeGen models. In particular, the AUC
for Figure 6a yields 0.539 onDefects4J trained from scratch, 0.573 on
Defects4J trained from CodeGen-350M, 0.638 on Defects4J trained
from CodeGen-6B, and 0.677 on Defects4J trained from CodeGen-
16B. Figures 6b and 6c show a significant improvement in our
model’s predictive power as we use a larger dataset of code corpus.
LLMAO with CodeGen-16B trained on our smallest dataset BugsInPy
yields an AUC of 0.571, and LLMAO with CodeGen-16B trained on
our largest dataset Devign yields an AUC 0.855. We observe that
our model’s predictive performance on Devign is better than our
model’s predictive performance on BugsInPy at all thresholds.

RQ4 Summary
Our approach generalizes to other languages and domains, given
a large enough labeled. LLMAO is more confident in its fault
detection as the size of both training data and the pretrained
model scale up. LLMAO is also particularly effective for locating
security bugs in C where test cases are not available.

5 RELATEDWORK
We discuss in the following sections the most recent advances in
fault localization and LLM for code.

5.1 SBFL and MBFL
Spectrum-based Fault Localization (SBFL) [1, 6, 35, 36] andMutation-
based Fault Localization (MBFL) [8, 37–39] have been extensively
studied for fault localization.

SBFL calculates the suspiciousness score of each code line to
represent the probability of the line being faulty. SBFL measures
the number of failed and passed tests that cover each code line
to generate the suspiciousness score. To generate suspiciousness
scores, SBFL uses a ranking formulae based on the test coverage
information of each code line. Although SBFL is widely accepted
due to its simplicity and efficiency, SBFL takes coverage as the only
input information, and more specifically only retrieves the number
of tests from test coverage information. Test coverage alone cannot
always encapsulate the faulty behaviors from code lines.

MBFL techniques [8, 37–39] mitigate the limitations of SBFL
by applying mutation testing to generate mutants for the original
program under a test suite. The original program is mutated with

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Aidan Z.H. Yang, Claire Le Goues, Ruben Martins, and Vincent J. Hellendoorn

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Random
Defects4J-Transformer
Defects4J-350M
Defects4J-6B
Defects4J-16B

(a) ROC curves on the Defects4J dataset

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Random
BugsInPy-Transformer
BugsInPy-350M
BugsInPy-16B
BugsInPy-6B

(b) ROC curves on the BugsInPy dataset

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Random
Devign-Transformer
Devign-350M
Devign-6B
Devign-16B

(c) ROC curves on the Devign dataset

Figure 6: ROC curves on the completely random prediction,
our model without any pretraining (Transformer), and pre-
trained on CodeGen-small (350M), CodeGen-medium (6B),
and CodeGen-large (16B). Higher area under the curve (AUC)
represents stronger predictive power.

one syntactic change that corresponds to a predefined rule. The
mutation rules are called mutation operators, (e.g., change if (𝑎==𝑏)
into if (𝑎!=𝑏)). MBFL techniques use mutants to check the impacts
of code elements on the test outcomes for fault localization. MBFL
techniques consider the impact information whereas SBFL does not.
However, MBFL techniques would fail in cases where an element
does not have a possible mutant for impact simulation.

Although leveraging test coverage and program mutation is
relatively simpler than billion parameter deep learning models,
SBFL cannot accurately rank the statements with the same spectrum
scores, and MBFL fails in situations where a mutant cannot be
instantiated. Furthermore, both SBFL and MBFL depend on the
extent the test suite can soundly and completely cover the source
code. Our work does not depend on test coverage, but instead uses
the naturalness of code [22].

5.2 MLFL
Machine learning fault localization techniques have been proposed
using insights from program analysis on code behavior. Prior MLFL
techniques train on data such as test coverage [40, 41], co-changing
method declaration and corresponding statement-level calls [4],
or the program’s code structure, such as the abstract syntax tree
(AST) [10]. Recent deep learning techniques, such as GRACE [3]
and FixLocator [4], encode the AST and test coverage as graph
representations and learn to rank faulty methods with graph neural
networks (GNN) [42]. GNNs can directly analyze graph structured
information with all topological dependencies reserved, so as to not
lose information through data preprocessing. DeepRL4FL [10] use
Convolution Neural Network (CNN) [43] applied on code coverage
(CC) matrix. TRANSFER-FL [11] leverages the deep semantic fea-
tures and transferred knowledge from open-source data to improve
fault localization. DeepFL [2] and TRANSFER-FL [11] combine
semantic-based, spectrum-based, and mutation-based features and
use a multi-layer perceptron (MLP) model for fault localization.

In contrast, LLMAO does not require test code, an AST parser, and
includes a text tokenizer and embedding layer by construction. Prior
MLFL models base their architecture on recurrent or convolutional
neural networks. LLMAO leverages attention mechanisms [26] and
build bidirectional adapter layers on pretrained left-to-right LLMs
directly on source code.

5.3 LMs for Code
Language models (LMs) are widely applied to natural language [44].
Recent advances in language modeling using code as training data
have shown that LMs can perform code completion [45] and gen-
erate code based on natural language [46] with impressive results.
Large Language Models (LLMs) have drastically raised performance
on these tasks [14]. However, studies have shown that LLM code
generation techniques, such as Codex [14] or GPT-Neo [19], can be
prompted to generate buggy programs, including ones with security
vulnerabilities [47]. Furthermore, many existing code based LLMs
are not publicly available for customization for specific tasks [17].
Our work shows how to build a bidirectional language model fine-
tuned on a left-to-right model, and trained specifically for the task
of fault localization.

Large Language Models for Test-Free Fault Localization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

6 DISCUSSION AND THREATS
Why does it work? Recent LLMs train on such a large corpus of
data that they can generate functionally correct code bodies from
simple natural language documentation [14].

Models such as Codex [14] and InCoder [48] can perform the
opposite direction as well: generate natural language docstring
from code snippets alone. These abilities suggest that LLMs extract
a significant amount of semantic knowledge from the code they
process, even as their objective is just to predict each next token.

We believe that this ability to reason about code semantics trans-
lates naturally to reasoning about defects or vulnerabilities. While
the model may have been mostly trained on correct code, it likely
notes surprising, bug-related patterns much as traditional language
models do [22], incorporating this information into token repre-
sentation, since knowledge of a potential mistake is important for
next-token prediction as well. Our first attempt to directly train
a fault localizer on top of an LLM specialized in program synthe-
sis supported this notion by yielding surprisingly strong results
(Top-5 score of 85), but still fell short of common baselines. Our
second key observation is that the LLM’s knowledge at any given
token is also incomplete, lacking awareness of suffix. Many bugs,
including the one in Figure 1a, cannot be reliably determined until
close to the end of the program, so the model is incentivized to
store information about potentially important missing knowledge
(in the example: whether getNullText() can return null) in the
representation of earlier tokens (those on line 5) for later tokens
to consider. Our adapter layers were subsequently introduced to
exploit the observation that the representations of later tokens
might contain valuable information for determining the bugginess
of earlier ones. The resulting model outperformed all baselines and
showed strong signs of improving with the scale of the underlying
LLM, strongly supporting this approach.

Threats to validity. One threat to internal validity lies in using
diff descriptions of bug-fixing commits to identify faulty state-
ments. Different annotators can disagree about the true cause of a
defect [49], and parsing commits provides a noisy proxy for truly
faulty lines associated with a bug. We mitigate this threat first by
relying on well-established previously-published datasets with his-
torical bug fixes. These datasets are manually curated to confirm
that the commits in question do fix a given bug, and Defects4J’s
bug-fixing commits are further pruned to include only bug-relevant
changes (reducing the influence of unrelated “tangled” changes
such as refactorings). We note that Defects4J , on which the bulk of
our experiments are performed, is a very common dataset in prior
fault localization work, supporting comparison and consistency.
The use of the commit to indicate ground-truth faulty statements
or methods has similar precedent in the literature (e.g., but not
limited to, refs [11, 22, 30]). At worst, a developer fix provides a
conservative approximation of code defectiveness. We further miti-
gate the risks of mistakes in our implementation by releasing our
scripts, code, and data as part of a replication package for this work
available at https://github.com/squaresLab/LLMAO. Threats to
external validity lie in whether results on our benchmarks will gen-
eralize to real-world contexts. To reduce this threat, we evaluate on
the widely-used Defects4J-V1.2.0 [21] with hundreds of real-world
bugs. Although it is a widely-used benchmark, recent techniques

may be overfitting to it [50]; we therefore additionally train our
tool on two other benchmarks, BugsInPy and Devign.

As LLMAO is trained on top of CodeGen, which takes as training
data roughly 65 GiB of code fromGitHub repositories up to 2021, we
can not fully mitigate the bias that our datasets could be included
in its training data. However, CodeGen was trained on a very large
volume of code, meaning that the model retains relatively little
memory of our partition of that training data. The training data of
CodeGen also does not include the manually annotated labels for
bugs, but rather the repositories of the faulty code directly, which
would not bias our fault localization models.

Threats to construct validity lie in measurements used. We use
multiple metrics widely used to evaluate both fault localization and
ML models. We also perform our experiments under 10-fold cross
validation and across three datasets to strengthen generalizability.

7 CONCLUSIONS
In this paper, we propose LLMAO, an LLM-based approach for lo-
calizing program defects, which include general logic defects as
well as security vulnerabilities. We perform an empirical study on
395 real bugs from Defects4J , 493 bugs from BugsInPy, and 5,260
security vulnerabilities from Devign. Our results show that LLMAO
can outperform existing state-of-the-art deep learning based fault
localization techniques without the use of insights from extensive
program analysis, or any test cases. In particular, LLMAO can lo-
calize 48/395 more faults within the Top-5 than the first proposed
deep learning based fault localizer, DeepFL, which is guided by
SBFL and MBFL artifacts that require extensive manual labor to
attain. LLMAO can localize 23/155 more bugs within Top-5 than
TRANSFER-FL, which is the latest state-of-the-art deep learning
based fault localizer. The comparison of AUC on different versions
of our model shows that training on top of larger LLMs improves
performance significantly and that our approach based on bidi-
rectional adapter layers is essential for achieving state-of-the-art
localization scores. The experimental results show that pretraining
on the largest CodeGen model (e.g., 16 billion parameters) achieves
the highest AUC on all our studied datasets. To the best of our
knowledge, LLMAO is the first DL based tool to localize security
vulnerabilities on a line level without requiring test cases or even
compilable code.

ACKNOWLEDGEMENTS
This work was partially supported by the US National Science
Foundation (NSF) awards CCF-1750116 and CCF-1762363, and by
ANI 045917 award funded by FEDER and Portuguese Foundation
for Science and Technology (FCT).

REFERENCES
[1] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of spectrum-

based fault localization,” in Testing: Academic and industrial conference practice
and research techniques-MUTATION (TAICPART-MUTATION 2007), pp. 89–98,
IEEE, 2007.

[2] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple fault diagnosis
dimensions for deep fault localization,” in Proceedings of the 28th ACM SIGSOFT
international symposium on software testing and analysis, pp. 169–180, 2019.

[3] Y. Lou, Q. Zhu, J. Dong, X. Li, Z. Sun, D. Hao, L. Zhang, and L. Zhang, “Boosting
coverage-based fault localization via graph-based representation learning,” in
Proceedings of the 29th ACM Joint Meeting on European Software Engineering

https://github.com/squaresLab/LLMAO

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Aidan Z.H. Yang, Claire Le Goues, Ruben Martins, and Vincent J. Hellendoorn

Conference and Symposium on the Foundations of Software Engineering, pp. 664–
676, 2021.

[4] Y. Li, S. Wang, and T. N. Nguyen, “Fault localization to detect co-change fixing
locations,” in Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 659–
671, 2022.

[5] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula automatic
fault-localization technique,” in Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pp. 273–282, 2005.

[6] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation of similarity
coefficients for software fault localization,” in 2006 12th Pacific Rim International
Symposium on Dependable Computing, pp. 39–46, IEEE, 2006.

[7] L. Zhang, L. Zhang, and S. Khurshid, “Injecting mechanical faults to localize
developer faults for evolving software,” ACM SIGPLAN Notices, vol. 48, no. 10,
pp. 765–784, 2013.

[8] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating faulty programs
for fault localization,” in 2014 IEEE Seventh International Conference on Software
Testing, Verification and Validation, pp. 153–162, IEEE, 2014.

[9] T. T. Chekam, M. Papadakis, and Y. Le Traon, “Assessing and comparing mutation-
based fault localization techniques,”

[10] Y. Li, S. Wang, and T. Nguyen, “Fault localization with code coverage represen-
tation learning,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering, pp. 661–673, IEEE, 2021.

[11] X. Meng, X. Wang, H. Zhang, H. Sun, and X. Liu, “Improving fault localization
and program repair with deep semantic features and transferred knowledge,” in
Proceedings of the 44th International Conference on Software Engineering, pp. 1169–
1180, 2022.

[12] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs. experience: Evalu-
ating the usability of code generation tools powered by large language models,” in
Chi conference on human factors in computing systems extended abstracts, pp. 1–7,
2022.

[13] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and
C. Xiong, “Codegen: An open large language model for code with multi-turn
program synthesis,” arXiv preprint arXiv:2203.13474, 2022.

[14] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards,
Y. Burda, N. Joseph, G. Brockman, et al., “Evaluating large language models
trained on code,” arXiv preprint arXiv:2107.03374, 2021.

[15] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee,
Y. T. Lee, Y. Li, S. Lundberg, et al., “Sparks of artificial general intelligence: Early
experiments with gpt-4,” arXiv preprint arXiv:2303.12712, 2023.

[16] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,
A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural language models,”
arXiv preprint arXiv:2001.08361, 2020.

[17] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic evaluation of
large language models of code,” in Proceedings of the 6th ACM SIGPLAN Interna-
tional Symposium on Machine Programming, pp. 1–10, 2022.

[18] Y. Li, S. Wang, and T. N. Nguyen, “Dear: A novel deep learning-based approach
for automated program repair,” in Proceedings of the 44th International Conference
on Software Engineering, pp. 511–523, 2022.

[19] S. Black, S. Biderman, E. Hallahan, Q. Anthony, L. Gao, L. Golding, H. He, C. Leahy,
K. McDonell, J. Phang, et al., “Gpt-neox-20b: An open-source autoregressive
language model,” arXiv preprint arXiv:2204.06745, 2022.

[20] L. Tunstall, L. Von Werra, and T. Wolf, Natural language processing with trans-
formers. O’Reilly Media, Inc., 2022.

[21] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing faults to
enable controlled testing studies for java programs,” in Proceedings of the 2014
international symposium on software testing and analysis, pp. 437–440, 2014.

[22] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. Devanbu, “On the"
naturalness" of buggy code,” in Proceedings of the 38th International Conference
on Software Engineering, pp. 428–439, 2016.

[23] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulnerability identifi-
cation by learning comprehensive program semantics via graph neural networks,”
Advances in neural information processing systems, vol. 32, 2019.

[24] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning based vulnerability
detection: Are we there yet,” IEEE Transactions on Software Engineering, 2021.

[25] D. Engler and K. Ashcraft, “Racerx: Effective, static detection of race conditions
and deadlocks,” ACM SIGOPS operating systems review, vol. 37, no. 5, pp. 237–252,
2003.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in neural information
processing systems, vol. 30, 2017.

[27] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He,
A. Thite, N. Nabeshima, et al., “The pile: An 800gb dataset of diverse text for
language modeling,” arXiv preprint arXiv:2101.00027, 2020.

[28] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE transactions on neural networks, vol. 5, no. 2,
pp. 157–166, 1994.

[29] R. Widyasari, S. Q. Sim, C. Lok, H. Qi, J. Phan, Q. Tay, C. Tan, F. Wee, J. E. Tan,
Y. Yieh, et al., “Bugsinpy: A database of existing bugs in python programs to
enable controlled testing and debugging studies,” in Proceedings of the 28th ACM
joint meeting on european software engineering conference and symposium on the
foundations of software engineering, pp. 1556–1560, 2020.

[30] Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, “Improving bug detection via
context-based code representation learning and attention-based neural networks,”
Proc. ACM Program. Lang., vol. 3, oct 2019.

[31] C. Parnin and A. Orso, “Are automated debugging techniques actually helping
programmers?,” in Proceedings of the 2011 international symposium on software
testing and analysis, pp. 199–209, 2011.

[32] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on automated
fault localization,” in Proceedings of the 25th International Symposium on Software
Testing and Analysis, pp. 165–176, 2016.

[33] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L.
Casas, L. A. Hendricks, J. Welbl, A. Clark, et al., “Training compute-optimal large
language models,” arXiv preprint arXiv:2203.15556, 2022.

[34] R. F. Woolson, “Wilcoxon signed-rank test,”Wiley encyclopedia of clinical trials,
pp. 1–3, 2007.

[35] W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai, “Effective fault localization using
code coverage,” in 31st Annual International Computer Software and Applications
Conference, vol. 1, pp. 449–456, IEEE, 2007.

[36] L. Zhang, M. Kim, and S. Khurshid, “Localizing failure-inducing program edits
based on spectrum information,” in 2011 27th IEEE International Conference on
Software Maintenance, pp. 23–32, IEEE, 2011.

[37] V. Musco, M. Monperrus, and P. Preux, “A large-scale study of call graph-based
impact prediction using mutation testing,” Software Quality Journal, vol. 25,
pp. 921–950, 2017.

[38] M. Papadakis and Y. Le Traon, “Metallaxis-fl: mutation-based fault localization,”
Software Testing, Verification and Reliability, vol. 25, no. 5-7, pp. 605–628, 2015.

[39] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. DeHalleux, andH.Mei, “Test generation
via dynamic symbolic execution for mutation testing,” in 2010 IEEE international
conference on software maintenance, pp. 1–10, IEEE, 2010.

[40] L. C. Briand, Y. Labiche, and X. Liu, “Usingmachine learning to support debugging
with tarantula,” in The 18th IEEE International Symposium on Software Reliability,
pp. 137–146, IEEE, 2007.

[41] Z. Zhang, Y. Lei, Q. Tan, X.Mao, P. Zeng, and X. Chang, “Deep learning-based fault
localization with contextual information,” IEICE TRANSACTIONS on Information
and Systems, vol. 100, no. 12, pp. 3027–3031, 2017.

[42] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The
graph neural network model,” IEEE transactions on neural networks, vol. 20, no. 1,
pp. 61–80, 2008.

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,”Communications of the ACM, vol. 60, no. 6, pp. 84–
90, 2017.

[44] Y. Bengio, R. Ducharme, and P. Vincent, “A neural probabilistic language model,”
Advances in neural information processing systems, vol. 13, 2000.

[45] A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron, and S. Roy,
“Program synthesis using natural language,” in Proceedings of the 38th International
Conference on Software Engineering, pp. 345–356, 2016.

[46] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical language
models,” in Proceedings of the 35th ACM SIGPLAN conference on programming
language design and implementation, pp. 419–428, 2014.

[47] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri, “An empirical cyber-
security evaluation of github copilot’s code contributions,” ArXiv abs/2108.09293,
2021.

[48] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong, W.-t. Yih,
L. Zettlemoyer, and M. Lewis, “Incoder: A generative model for code infilling
and synthesis,” arXiv preprint arXiv:2204.05999, 2022.

[49] M. Böhme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe, and A. Zeller,
“Where is the bug and how is it fixed? an experiment with practitioners,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, (New York, NY, USA), p. 117–128, Association for Computing
Machinery, 2017.

[50] T. Durieux, F. Madeiral, M. Martinez, and R. Abreu, “Empirical review of java
program repair tools: A large-scale experiment on 2,141 bugs and 23,551 repair
attempts,” in Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
pp. 302–313, 2019.

	Abstract
	1 Introduction
	2 Motivation
	2.1 General Logic Defects
	2.2 Vulnerability Detection

	3 Approach
	3.1 Left-to-right Language Models
	3.2 Bidirectional Adapter

	4 Evaluation
	4.1 Setup
	4.2 Results

	5 Related Work
	5.1 SBFL and MBFL
	5.2 MLFL
	5.3 LMs for Code

	6 Discussion and Threats
	7 Conclusions
	References

